K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

( x + 1 ) 2 ( x 2 + 4 ) = x 2 − x − 2 (1)

Điều kiện: x2 + 4 ≥ 0 (luôn đùng x)

( 1 ) ⇔ ( x + 1 ) 2 ( x 2 + 4 ) = ( x − 2 ) ( x + 1 ) ⇔ ( x + 1 ) 2 ( x 2 + 4 ) − ( x − 2 ) = 0 ⇔ x = − 1 2 ( x 2 + 4 ) = x − 2 ( 2 )

  ( 2 ) ⇔ x ≥ 2 2 ( x 2 + 4 ) = x - 2 2 ⇔ x ≥ 2 x 2 + 4 x + 4 = 0 ⇔ x ≥ 2 x = − 2  (loại)

Vậy tập nghiệm của phương trình đã cho là {–1}

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

4 tháng 3 2018

hello bạn

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

8 tháng 2 2020

\(2\left(\sqrt{\frac{x^2+x+1}{x+4}}-1\right)+x^2-3=\frac{2}{\sqrt{x^2+1}}-1\)

\(\Leftrightarrow2\frac{\frac{x^2+x+1}{x+4}-1}{\sqrt{\frac{x^2+x+1}{x+4}}+1}+x^2-3=\frac{4-\left(x^2+1\right)}{\left(2+\sqrt{x^2+1}\right)\sqrt{x^2+1}}\)

\(\Leftrightarrow\frac{2\left(x^2-3\right)}{\sqrt{\left(x+4\right)\left(x^2+x+1\right)}+x+4}+x^2-3=\frac{3-x^2}{\left(2\sqrt{x^2+1}\right)\sqrt{x^2+1}}\)

\(\Leftrightarrow\left(x^2-3\right)\left(\frac{2}{\sqrt{\left(x+4\right)\left(x^2+x+1\right)}+x+4}+1+\frac{1}{\left(2+\sqrt{x^2+1}\right)\sqrt{x^2+1}}\right)=0\)

................................................................

(Cũng không chắc _-_ )

bạn làm đúng rồi đấy, mình đăng cho vuii thôi :)))

18 tháng 5 2017

Câu 1/

\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\left(1\right)\\3xy-x-y=1\left(2\right)\end{cases}}\)

Xét PT (2) ta có:

\(\left(2\right)\Leftrightarrow3xy-y=1+x\)

\(\Leftrightarrow y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow y+1=\frac{4x}{3x-1}\)

\(\Leftrightarrow\frac{x}{y+1}=\frac{3x-1}{4}\left(3\right)\)

Ta lại có:

\(y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow\frac{y}{x+1}=\frac{1}{3x-1}\left(4\right)\)

Từ PT (1) ta có

\(\left(1\right)\Leftrightarrow\left(\frac{3x-1}{4}\right)^2+\left(\frac{1}{3x-1}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow9x^4-12x^3-2x^2+4x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(3x+1\right)^2=0\)

Làm tiếp nhé

18 tháng 5 2017

Câu 2/

a/ \(x^2-1=3\sqrt{3x+1}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(3\sqrt{3x+1}\right)^2\)

\(\Leftrightarrow x^4-2x^2-27x-8=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+3x+8\right)=0\)

Tới đây thì đơn giản rồi nhé

b/ \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)

Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\\\sqrt{2+x}=b\end{cases}\left(a,b\ge0\right)}\)

Thì ta có:

\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=4\\\left(a+b\right)+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=2\\ab=0\end{cases}}\) hoặc \(\hept{\begin{cases}a+b=-4\\ab=6\end{cases}\left(l\right)}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}+\sqrt{2+x}=2\\\sqrt{4-x^2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

PS: Điều kiện xác định bạn tự làm nhé