\(\frac{x+a-1}{a+2}+\frac{x-a}{a-2}+\frac{x-a}{4-a^2}=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

b/ \(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)

\(\Leftrightarrow x^2-\left(ab+bc+ca+2a+2b+2c+1\right)x+2abc+ab+bc+ca=0\)

Đặt: \(\hept{\begin{cases}ab+bc+ca+2a+2b+2c+1=m\\2abc+ab+bc+ca=n\end{cases}}\) (đặt cho gọn)

\(\Leftrightarrow x^2-mx+n=0\)

\(\Leftrightarrow\left(x^2-\frac{2m}{2}x+\frac{m^2}{4}\right)-\frac{m^2}{4}+n=0\)

\(\Leftrightarrow\left(x-\frac{m}{2}\right)^2=\frac{m^2}{4}-n\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{m^2}{4}-n}+\frac{m}{2}\\x=-\sqrt{\frac{m^2}{4}-n}+\frac{m}{2}\end{cases}}\)

12 tháng 3 2017

a/ \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)

\(\Leftrightarrow\left(a+b\right)x^2-\left(a^2+b^2\right)x-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(\left(a+b\right)x^2-\frac{2x\sqrt{a+b}.\left(a^2+b^2\right)}{2\sqrt{a+b}}+\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}\right)-\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(\sqrt{a+b}x-\frac{a^2+b^2}{2\sqrt{a+b}}\right)^2=\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)}+\frac{a^2+b^2}{2\sqrt{a+b}}}{\sqrt{a+b}}\\x=\frac{-\sqrt{\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)}+\frac{a^2+b^2}{2\sqrt{a+b}}}{\sqrt{a+b}}\end{cases}}\)

\(a,4x^2-\left(2x-1\right)\left(1-4x\right)=1\)

\(\left(2x-1\right)\left(1-4x\right)=4x.4x-1\)

\(TH1:\orbr{\begin{cases}2x-1=4x.4x-1\\1-4x=4x.4x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-4x.4x=-1+1\\-4x-4x.4x=-1-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x-16x=0\\-4x-16x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-14x=0\\-20x=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{10}\end{cases}}}\)

Vậy pt có nghiệm là (x;y) = (0;1/10) 

tự thực hiện tiếp vs dấu - , kl TH1 thoi 

3 tháng 3 2020

a) ĐKXĐ : \(x\ne\pm a\).

Với \(a=-3\) khi đó ta có pt :

\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)

\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)

\(\Leftrightarrow2x^2+6x+24=0\)

\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )

Phần b) tương tự.

3 tháng 3 2020

\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)

\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)

\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)

\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)

\(\Leftrightarrow2ax=3a^2+a\)

\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)

a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)

b) a=1

\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)

4 tháng 3 2020

a) \(ĐKXĐ:x\ne\pm3\)

Với a = -3

\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)

\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)

\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)

\(\Leftrightarrow-2x^2+6=0\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)

Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

b) \(ĐKXĐ:x\ne\pm1\)

Với a = 1

\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)

\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)

\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)

\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)

\(\Leftrightarrow-2x^2+2=0\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)(ktm)

Vậy với \(a=1\Leftrightarrow x\in\varnothing\)

c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :

\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)

\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)

\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)

\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)

 Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\) 

15 tháng 1 2020

\(ĐKXĐ:a,b,c\ne0\)

\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow\frac{xa-a^2}{abc}+\frac{xb-b^2}{abc}+\frac{xc-c^2}{abc}=\frac{2bc}{abc}+\frac{2ac}{abc}+\frac{2ab}{abc}\)

\(\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2bc+2ac+2ab}{abc}\)

\(\Leftrightarrow xa-a^2+xb-b^2+xc-c^2=2bc+2ac+2ab\)

\(\Leftrightarrow xa+xb+xc=2bc+2ac+2ab+a^2+b^2+c^2\)

\(\Leftrightarrow x\left(a+b+c\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow x=a+b+c\)

Vậy x = a + b + c

15 tháng 1 2020

\(ĐKXĐ:a,b,c\ne0\)

\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)

\(\Leftrightarrow1+\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}=4\)

\(-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)

\(\frac{4\left(a+b+c\right)}{a+b+c}-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)

\(\frac{4\left(a+b+c-x\right)}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

\(\Rightarrow\left(a+b+c-x\right)=0\)hoặc \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

+) Nếu \(\Rightarrow\left(a+b+c-x\right)=0\)thì x = a + b + c

+) Nếu \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)thì x thỏa mãn với mọi số