\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

a) ĐKXĐ : \(x\ne\pm a\).

Với \(a=-3\) khi đó ta có pt :

\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)

\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)

\(\Leftrightarrow2x^2+6x+24=0\)

\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )

Phần b) tương tự.

3 tháng 3 2020

\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)

\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)

\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)

\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)

\(\Leftrightarrow2ax=3a^2+a\)

\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)

a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)

b) a=1

\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)

4 tháng 3 2020

a) \(ĐKXĐ:x\ne\pm3\)

Với a = -3

\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)

\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)

\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)

\(\Leftrightarrow-2x^2+6=0\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)

Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

b) \(ĐKXĐ:x\ne\pm1\)

Với a = 1

\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)

\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)

\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)

\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)

\(\Leftrightarrow-2x^2+2=0\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)(ktm)

Vậy với \(a=1\Leftrightarrow x\in\varnothing\)

c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :

\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)

\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)

\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)

\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)

 Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\) 

Các bạn ơi ! Giúp mik với.....B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1<...
Đọc tiếp

Các bạn ơi ! Giúp mik với.....

B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)

B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)

B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)

B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
B5: Cho phương trình : \(\left(m^2-4\right)x+2=m\left(1\right)\)

       Với điều kiện nào của m thì phương trình (1) là một phương trình bậc nhất . Tìm nghiệm của phương trình trên với tham số là m.

 

Ai làm đúng thì mình tích cho nhé !!! Mik cân gấp các bạn nào có cách giải nào thì trả lời nhé !!!! Nghỉ Tết mà nhiều bài quá :)) :v 

0
15 tháng 3 2020

a) Với a=4 thì phương trình bằng \(\frac{x+4}{x+2}+\frac{x-2}{x-4}\)= 2  với đkxđ: \(x\ne2,4\)

Giải phương trình: \(\frac{x+4}{x+2}+\frac{x-2}{x-4}\)= 2 => \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=> \(\frac{2}{x+2}+\frac{2}{x-4}=0\Rightarrow\frac{1}{x+2}+\frac{1}{x-4}=0\)

=> \(\frac{\left(x-4\right)+\left(x+2\right)}{\left(x+2\right)\cdot\left(x-4\right)}=0\)=> 2x-2=0 => x=1 (thỏa mãn đkxđ)

Vậy x=1

b) Với x=-1 => \(\frac{a-1}{1}+\frac{-3}{-1-a}=2\)(đkxđ: a không bằng -1)

=> \(\left(a-1\right)+\frac{3}{a+1}=2\)

=> \(\frac{a^2-1+3}{a+1}=2\)=> \(a^2+2=2\left(a+1\right)\Rightarrow a^2-2a=0\)

=> \(a\left(a-2\right)=0\)=> a = (0; 2) (thỏa mãn đkxđ)

Vậy để phương trình có nghiệm x=-1 thì a={0; 2}

\(a,4x^2-\left(2x-1\right)\left(1-4x\right)=1\)

\(\left(2x-1\right)\left(1-4x\right)=4x.4x-1\)

\(TH1:\orbr{\begin{cases}2x-1=4x.4x-1\\1-4x=4x.4x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-4x.4x=-1+1\\-4x-4x.4x=-1-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x-16x=0\\-4x-16x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-14x=0\\-20x=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{10}\end{cases}}}\)

Vậy pt có nghiệm là (x;y) = (0;1/10) 

tự thực hiện tiếp vs dấu - , kl TH1 thoi 

18 tháng 12 2019

\(\text{a) Thay a = 4 vào pt ta có:}\)
      \(\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+4\right)+\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=2\)
\(\Leftrightarrow\frac{x^2-16+x^2-4}{x^2-4x+2x-8}=2\)
\(\Leftrightarrow\frac{2x^2-20}{x^2-2x-8}=2\)
\(\Leftrightarrow2x^2-20=2.\left(x^2-2x-8\right)\)
\(\Leftrightarrow2x^2-20=2x^2-4x-16\)
\(\Leftrightarrow2x^2-2x^2+4x=-16+20\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)

\(\text{b) Thay x = -1 vào pt ta có:}\)
     \(\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{a-1}{1}+\frac{-3}{-\left(a+1\right)}=2\)
\(\Leftrightarrow\left(a-1\right)+\frac{3}{a+1}=2\)
\(\Leftrightarrow\frac{\left(a-1\right)\left(a+1\right)+3}{a+1}=2\)
\(\Leftrightarrow\frac{a^2-1+3}{a+1}=2\)
\(\Leftrightarrow a^2+2=2.\left(a+1\right)\)
\(\Leftrightarrow a^2+2=2a+2\)
\(\Leftrightarrow a^2-2a=2-2\)
\(\Leftrightarrow a\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy để pt có nghiệm là x = 1 thì a = {0 ; 2}
 


 

18 tháng 12 2019

\(a.Thay:a=4\Leftrightarrow\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

                    \(\Leftrightarrow\frac{\left(x+4\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}=\frac{2\left(x+2\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}\)

                    \(\Rightarrow\left(x+4\right)\left(x-4\right)+\left(x-2\right)\left(x+2\right)=2\left(x+2\right)\left(x-4\right)\)

                    \(\Leftrightarrow x^2-4x+4x-16+x^2+2x-2x-4=\left(2x+4\right)\left(x-4\right)\)

                    \(\Leftrightarrow2x^2-20=2x^2-8x+4x-16\)

                    \(\Leftrightarrow2x^2-20-2x^2+8x-4x+16=0\)

                    \(\Leftrightarrow4x-4=0\)

                    \(\Leftrightarrow x=1\)

                          

26 tháng 3 2018

a. Nhân hai vế của phương trình (1) với 24, ta được:\(\frac{7x}{8}\)−5(x−9)⇔\(\frac{1}{6}\)(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=67x8−5(x−9)⇔16(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=6

Vậy phương trình (1) có một nghiệm duy nhất x = 6.

b. Ta có:

2(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+32(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+3                          (3)

Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.

Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.

c. Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2. Do (3) nên phương trình (2) có nghiệm x = 2 cũng có nghĩa là phương trình (a−2)2=a+3(a−2)2=a+3 có nghiệm x = 2. Thay giá trị x = 2 vào phương trình này, ta được(a−2)2=a+3(a−2)2=a+3. Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:

(a−2)2=a+3⇔a=7(a−2)2=a+3⇔a=7

Khi a = 7, dễ thử thấy rằng phương trình (a−2)x=a+3(a−2)x=a+3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.