Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=\sqrt[3]{x+6}\Rightarrow x+6=t^3\Rightarrow x=t^3-6\)
Phương trình trở thành \(x^3-\sqrt[3]{6+t}=6\)
Tiếp tục đặt \(h=\sqrt[3]{6+t}\Rightarrow t=h^3-6\)
Phương trình trở thành \(x^3-h=6\Rightarrow h=x^3-6\)
Từ đó ta có hệ 3 ẩn hoán vị vòng quanh \(\hept{\begin{cases}x=t^3-6\\t=h^3-6\\h=x^3-6\end{cases}}\)
Do x, t và h bình đẳng trong hệ trên nên ta giả sử x = min {x ; t; h}
Do \(x\le t;x\le h\Rightarrow\hept{\begin{cases}t^3-6\le h^3-6\\t^3-6\le x^3-6\end{cases}}\Rightarrow\hept{\begin{cases}t\le h\\t\le x\end{cases}}\)
Suy ra x = t = h.
Phương trình trở thành \(x=x^3-6\Rightarrow x^3-x-6=0\Rightarrow x=2.\)
Vậy phương trình có nghiệm x = 2.
pt<=>\(\sqrt{\left(x+6\right)^3}+\sqrt{x+6}=\left(x^2+4x\right)^3+x^2+4x\)
đặt\(\sqrt{x+6}=a;x^2+4x=b\)
Đk: tự xác định
\(pt\Leftrightarrow\sqrt{x+3}-\left(\frac{1}{3}x+1\right)+\sqrt{6-x}-\left(-\frac{1}{3}x+2\right)-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{x+3-\left(\frac{1}{3}x+1\right)^2}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{6-x-\left(-\frac{1}{3}x+2\right)^2}{\sqrt{6-x}-\frac{1}{3}x+2}-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{\left(x+3\right)\left(x-6\right)}{\sqrt{-\left(x+3\right)\left(x-6\right)}}=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-6\right)\left(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}\right)=0\)
Dễ thấy:\(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}< 0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=6\end{cases}}\)
1/ \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
\(\Leftrightarrow\frac{3-x}{\sqrt{5-x}}+\frac{3+x}{\sqrt{5+x}}=\frac{4}{3}\)
Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{5+x}=b\end{cases}}\) thì ta có:
\(\hept{\begin{cases}\frac{a^2-2}{a}+\frac{b^2-2}{b}=\frac{4}{3}\\a^2+b^2=10\end{cases}}\)
Tới đây thì đơn giản rồi nhé
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
a) x - sprt(x + 6) = 0
<=> -sprt(x + 6) = x2
<=> x + 6 = x2
<=> x + 6 - x2 = 0
<=> x2 - x - 6 = 0
<=> (x - 3)(x + 2) = 0
x - 3 = 0 hoặc x + 2 = 0
x = 0 + 3 x = 0 - 2
x = 3 x = -2
Vậy: nghiệm phương trình là: {3; -2}
b) (7 + sprt(x)).(8 - sprt(x)) = x + 11
<=> 56 - 7sprt(x) + 8sprt(x) - x = x + 11
<=> 56 + sprt(x) - x = x + 11
<=> sprt(x) = x + 11 - 56 + x
<=> sprt(x) = 2x - 45
<=> x = (2x - 45)2
<=> x = 4x2 - 180x - 2025
<=> x - 4x2 + 180x + 2025 = 0
<=> 181x - 4x2 - 2025 = 0
<=> 4x2 - 181x - 2025 = 0
<=> 4x2 - 81x - 100x + 2025 = 0
<=> x(4x - 81) - 25(4x - 81) = 0
<=> (4x - 81)(x - 25) = 0
4x - 81 = 0 hoặc x - 25 = 0
4x = 0 + 81 x = 0 + 25
4x = 81 x = 25
x = 81/4
Vậy nghiệm phương trình là: {81/4; 25}
Mình viết giống bạn hi vọng nó sẽ không khó hiểu :v
\(ĐKXĐ:x\ge\frac{1}{2}\)
Áp dụng BĐT AM - GM cho các số dương ta có :
\(\sqrt{2x-1}=\sqrt{1.\left(2x-1\right)}\le\frac{1+2x-1}{2}=x\)
\(\sqrt[4]{4x-3}=\sqrt[4]{1.1.1.\left(4x-3\right)}\le\frac{1+1+1+4x-3}{4}=x\)
\(\sqrt[6]{6x-5}=\sqrt[6]{1.1.1.1.1.\left(6x-5\right)}\le\frac{1+1+1+1+1+6x-5}{6}=x\)
\(\Rightarrow\sqrt{2x-1}+\sqrt[4]{4x-3}+\sqrt[6]{6x-5}\le3x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
Vậy pt có nghiệm duy nhất \(x=1\)
\(x^3-\sqrt[3]{6+\sqrt[3]{x+6}}=6\Leftrightarrow x^3-\left(\sqrt[3]{6+\sqrt[3]{x+6}}-2\right)=8\)
\(\Leftrightarrow\left(x^3-8\right)-\frac{\sqrt[3]{x+6}-2}{\sqrt[3]{\left(6+\sqrt[3]{x+6}\right)^2}+2\sqrt[3]{6+\sqrt[3]{x+6}}+4}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\frac{x-2}{\left(\sqrt[3]{\left(6+\sqrt[3]{x+6}\right)^2}+2\sqrt[3]{6+\sqrt[3]{x+6}}+4\right)\left(\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4\right)}=0\)
\(\Leftrightarrow x=2.\)