\(\sqrt{x^3-x}\)= \(2x^2\)- x - 2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

ĐK:\(-1\le x\le0\text{⋃}x\ge1\text{ }\)

\(\Leftrightarrow x^3-x=4x^4-4x^3-7x^2+4x+4\)

\(\Leftrightarrow-4x^4+5x^3+7x^2-5x-4=0\)

\(\Leftrightarrow-\left(x^2-x-1\right)\left(4x^2-x-4\right)=0\)

\(\Leftrightarrow-\left(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right)\left(4\left(x-\frac{1}{8}\right)^2-\frac{65}{16}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{1-\sqrt{65}}{8}\end{cases}}\) (thỏa)

16 tháng 10 2016

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

<=> \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

<=> (\(\sqrt{x-1}-1\))(\(\sqrt{x-2}-\sqrt{x+3}\)) = 0

<=> \(\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{cases}}\)

<=> x = 2

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v

17 tháng 9 2018

\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)

\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)

\(\Leftrightarrow x+3+4x-4\sqrt{x+3}.\sqrt{x}=2x+2+3x+1-2\sqrt{2x+2}.\sqrt{3x+1}\)

\(\Leftrightarrow2\sqrt{x+3}.\sqrt{x}=\sqrt{2x+2}.\sqrt{3x+1}\)

\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)

\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)

\(\Leftrightarrow x=1\)

23 tháng 8 2019

Bổ sung tiếp bài của dưới

\(4\left(x^2+3x\right)-6x^2-8x-2=0\)

\(\Rightarrow4x^2-12x-6x^2-8x-2=0\)

\(\Rightarrow-2x^2+4x-2=\left(-2\right)\left(x^2-2x+1\right)=0\)

\(\Rightarrow-2\left(x-1\right)^2=0\Leftrightarrow x=1\)

11 tháng 10 2018

ĐKXĐ \(x\ge\frac{5}{2}\)

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

\(\Rightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)

\(\Rightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Rightarrow\sqrt{2x-5}+3+|\sqrt{2x-5}-1|=4\)(1)

+, \(\frac{5}{2}\le x< 3\),khi đó pt (1) trở thành

\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)\(\Rightarrow0x=0\)(luôn đúng)

+, \(x\ge3\),khi đo pt (1) trở thành

\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)

\(\sqrt{2x-5}=1\Rightarrow2x-5=1\Rightarrow x=3\)

Vậy pt đã cho có nghiệm là \(\frac{5}{2}\le x\le3\)

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

 ĐK: \(x\ge\frac{3}{2}\)

 \(\sqrt{2x-3}+3=x\) 

<=> \(\sqrt{2x-3}=x-3\) (đk: \(x\ge3\)

=> \(2x-3=\left(x-3\right)^2\) 

<=> \(2x-3=x^2-6x+9\) 

<=> \(x^2-8x+12=0\) <=> \(\left(x-6\right)\left(x-2\right)=0\) 

=> \(\orbr{\begin{cases}x=6\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{cases}}\) 

Hai câu sau tương tự nhé bn 

\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)

<=> \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\) 

<=> \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\) 

<=> \(2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) 

<=> \(2x=3=>x=\frac{3}{2}\)

\(\sqrt{x^2-2x+2}=x-2\)

\(\Leftrightarrow\sqrt{\left(x^2-2x+2\right)^2}=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-2x+2=x^2-4x+4\)

\(\Leftrightarrow x^2-x^2-2x+4x=4-2\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
5 tháng 8 2017

a)\(2x^2+x+3=3x\sqrt{x+3}\)

ĐK:\(x\ge-3\)

\(pt\Leftrightarrow2x^2+x-3=3x\sqrt{x+3}-6\)

\(\Leftrightarrow2x^2+x-3=\frac{9x^2\left(x+3\right)-36}{3x\sqrt{x+3}+6}\)

\(\Leftrightarrow2x^2+x-3-\frac{9x^3+27x^2-36}{3x\sqrt{x+3}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)-\frac{9\left(x-1\right)\left(x+2\right)^2}{3x\sqrt{x+3}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left[2x+3-\frac{9\left(x+2\right)^2}{3x\sqrt{x+3}+6}\right]=0\)

.....................

b) sai đề hay vô nghiệm nhỉ