K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)

ĐK để phương trình có nghiệm \(3x-5\ge0\Rightarrow x\ge\frac{5}{3}\left(1\right)\)

nhẩm được \(x=2\)là nghiệm của phương trình trình ta sẽ thêm bớt vào hai vế để có thừa số chung là \(x-2\)

\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)(trục căn thức ):

\(\frac{\left(\sqrt{x^2+12}-4\right)\left(\sqrt{x^2+12}+4\right)}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{\left(\sqrt{x^2+5}-3\right)\left(\sqrt{x^2+5}+3\right)}{\sqrt{x^2+5}+3}\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)\(\Leftrightarrow\left(x-2\right)\left[\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right]=0\)

  1. TH1 :\(x-2=0\Leftrightarrow x=2\)
  2. \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3=0\)dễ thấy \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\)với ĐK (1) Ta có : \(\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}< 0\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3=0\left(VN\right)\)