Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12` `ĐK: x >= 0`
`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`
`<=>12\sqrt{3x}=12`
`<=>\sqrt{3x}=1`
`<=>3x=1<=>x=1/3` (t/m)
`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36` `ĐK: x >= -1`
`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`
`<=>12\sqrt{x+1}=36`
`<=>\sqrt{x+1}=3`
`<=>x+1=9`
`<=>x=8` (t/m)
Đặt \(t=\sqrt{x^2+4\sqrt{5}}\to t>0.\) Phương trình trở thành \(\frac{\left(2t^2-7\right)^2-161}{4}=\left(34-3t^2\right)t\Leftrightarrow\left(2t^2-7\right)^2-161=4t\left(34-3t^2\right)\)
\(\Leftrightarrow\left(t^2-2t-4\right)\left(t^2+5t+7\right)=0\Leftrightarrow t^2-2t=4\Leftrightarrow t=1+\sqrt{5}.\) (Vì t>0)
Vậy ta được \(x^2+4\sqrt{5}=\left(1+\sqrt{5}\right)^2\Leftrightarrow x^2=\left(\sqrt{5}-1\right)^2\Leftrightarrow x=\pm\left(\sqrt{5}-1\right).\)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
Gợi ý:
ĐK: \(x\ge-5\)
pt <=> \(2\sqrt{2x^2+5x+12}+2\sqrt{2x^2+3x+2}=2x+10\)
<=> \(2x^2+5x+12+2\sqrt{2x^2+5x+12}+1-2x^2-3x-2+2\sqrt{2x^2+3x+2}-1=0\)
<=> \(\left(\sqrt{2x^2+5x+12}+1\right)^2-\left(\sqrt{2x^2+3x+2}-1\right)^2=0\)
<=> \(\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}+2\right)=0\)
đến đây bn giải từng trường hợp ra nhé
Uầy , cách CTV Khánh làm đồ sộ vậy ? Bài này nhân liên hợp là ra mà . Và cái điều kiện x > -5 là điều kiện bình phương chớ ko phải ĐKXĐ đâu -.-
\(ĐKXĐ:x\in R\)
Vì VT > 0 nên VP > 0
<=> x + 5 > 0
<=> x > -5
Ta có: \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)
\(\Leftrightarrow\frac{\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2x^2+5x+12-2x^2-3x-2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2x+10}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2\left(x+5\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(\frac{2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-1\right)=0\)
|_____________________A______________________|
Vì \(A>0\forall x\ge5\)
Nên x + 5 = 0
<=> x = -5 (Tm ĐKXĐ)
a) xy2 + 2xy - 243y + x = 0
\(\Leftrightarrow\)x ( y + 1 )2 = 243y
Mà ( y ; y + 1 ) = 1 nên 243 \(⋮\)( y + 1 )2
Mặt khác ( y + 1 ) 2 là số chính phương nên ( y + 1 )2 \(\in\){ 32 ; 92 }
+) ( y + 1 )2 = 32 \(\Rightarrow\orbr{\begin{cases}y+1=3\\y+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=54\\y=-4\Rightarrow x=-108\end{cases}}}\)
+) ( y + 1 )2 = 92 \(\Rightarrow\orbr{\begin{cases}y+1=9\\y+1=-9\end{cases}\Rightarrow\orbr{\begin{cases}y=8\Rightarrow x=24\\y=-10\Rightarrow x=-30\end{cases}}}\)
vậy ...
b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)( đk : x > 0 )
\(\Leftrightarrow\sqrt{x^2+12}-4=3x+\sqrt{x^2+5}-9\)
\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)
\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\)
Vì \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)
Do đó : \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)nên x - 2 = 0 \(\Leftrightarrow\)x = 2
\(đk:2\le x\le4\) \(pt\Leftrightarrow\sqrt{x-2}+\sqrt{4-x}=x-2\sqrt{3x}+5\)
\(\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le2\left(x-2+4-x\right)=4\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
\(x-2\sqrt{3x}+5=\sqrt{x}^2-2\sqrt{3x}+5=\sqrt{x}^2-2\sqrt{3x}+3+2=\left(\sqrt{x}-\sqrt{3}\right)^2+2\ge2\)
\(\Rightarrow\left\{{}\begin{matrix}VT\le2\\VP\ge2\end{matrix}\right.\) dấu"=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{4-x}=2\\\left(\sqrt{x}-\sqrt{3}\right)^2+2=2\end{matrix}\right.\)
\(\Leftrightarrow x=3\left(tm\right)\)
(ủa đề sai chỗ nào ta?)
a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)
TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)
TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)
Vậy x=0,5...
d, đk \(x\ge-1\)
=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)
\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)
a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow\left|3x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)
\(\Leftrightarrow\left|x-3\right|=4-3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
ĐK để phương trình có nghiệm \(3x-5\ge0\Rightarrow x\ge\frac{5}{3}\left(1\right)\)
nhẩm được \(x=2\)là nghiệm của phương trình trình ta sẽ thêm bớt vào hai vế để có thừa số chung là \(x-2\)
\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)(trục căn thức ):
\(\frac{\left(\sqrt{x^2+12}-4\right)\left(\sqrt{x^2+12}+4\right)}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{\left(\sqrt{x^2+5}-3\right)\left(\sqrt{x^2+5}+3\right)}{\sqrt{x^2+5}+3}\)
\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)\(\Leftrightarrow\left(x-2\right)\left[\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right]=0\)