K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

b) \(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\) (*)

Đk: \(\left\{{}\begin{matrix}x>3\\y>1\\z>665\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\dfrac{x-3}{\sqrt{x-3}}-\dfrac{y-1}{\sqrt{y-1}}-\dfrac{z-665}{\sqrt{z-665}}\)

\(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}-82+\dfrac{x-3}{\sqrt{x-3}}+\dfrac{y-1}{\sqrt{y-1}}+\dfrac{z-665}{\sqrt{z-665}}=0\)

\(\Leftrightarrow\left(\dfrac{x-3}{\sqrt{x-3}}-\dfrac{8\sqrt{x-3}}{\sqrt{x-3}}+\dfrac{16}{\sqrt{x-3}}\right)+\left(\dfrac{y-1}{\sqrt{y-1}}-\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}+\dfrac{4}{\sqrt{y-1}}\right)+\left(\dfrac{z-665}{\sqrt{z-665}}-\dfrac{70\sqrt{z-665}}{\sqrt{z-665}}+\dfrac{1225}{\sqrt{z-665}}\right)=0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x-3}-4\right)^2}{\sqrt{x-3}}+\dfrac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}+\dfrac{\left(\sqrt{z-665}-35\right)^2}{\sqrt{z-665}}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}-4=0\\\sqrt{y-1}-2=0\\\sqrt{z-665}-35=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)

Kl: x=19, y= 5, z=1890

26 tháng 6 2018

c) \(\sqrt{x-5}-\dfrac{x-14}{3+\sqrt{x-5}}=3\) (*)

Đk: \(x\ge5\)

(*) \(\Leftrightarrow3\sqrt{x-5}+x-5-x+14=9+3\sqrt{x-5}\)

\(\Leftrightarrow0x=0\) (luôn đúng)

Vậy nghiệm của phương trình (*) là \(x\ge5\)

6 tháng 3 2021

a) \(x=-2\)

b) \(x=6\)

18 tháng 12 2021

a) \(\sqrt{14-x}\)+\(\sqrt{2-x}\)=6 ( đk: x<14 <; x<2)

\(\sqrt{14-x}\)=6-\(\sqrt{2-x}\)

⇔(\(\sqrt{14-x}\))2= ( 6-\(\sqrt{2-x}\))2

⇔14-x= 36-12\(\sqrt{2-x}\)+2-x

⇔-x+x+12\(\sqrt{2-x}\)= -14+36+2

⇔12\(\sqrt{2-x}\)= 24

\(\sqrt{2-x}\)=2

⇔(\(\sqrt{2-x}\))2= 4 

⇔2-x=4

⇔-x=2 

⇔x=-2 ( thỏa man điều kiện xác định)

          Vậy x=-2

b)\(\sqrt{x+3}\)-\(\sqrt{x-5}\)=2 ( đk :x≥5) 

\(\sqrt{x+3}\)= 2+\(\sqrt{x-5}\)

⇔(\(\sqrt{x+3}\))2= (2+\(\sqrt{x-5}\))2

⇔x+3= 4 +4\(\sqrt{x-5}\) +x-5

⇔x-x-\(4\sqrt{x-5}\)= -3+4-5

⇔ \(-4\sqrt{x-5}\)=-4

\(\sqrt{x-5}\)=1

⇔x-5=1

⇔x=6 ( thỏa mãn điều kiện xác định)

Vậy x=6 

 

 

21 tháng 7 2018

Lam lai nha , nay cau tha qua :(

\(\sqrt{x-5}-\dfrac{x-14}{3+\sqrt{x-5}}=3\) ( x ≥ 5 )

Dat : \(\sqrt{x-5}=a\) ( x ≥ 0 ) , ta co :

\(\sqrt{a}-\dfrac{a-9}{3+\sqrt{a}}=3\)

\(\sqrt{a}-\sqrt{a}+3=3\)

\(3=3\left(Luon-dung\right)\)

KL........

21 tháng 7 2018

\(\sqrt{x-5}-\dfrac{x-14}{3+\sqrt{x-5}}=3\)

\(\sqrt{x-5}-\dfrac{x-14}{3+\sqrt{x-5}}=3,x\in\left[5,+\infty\right]\)

\(\sqrt{x-5}-\dfrac{x-14}{3+\sqrt{x-5}}-3=0\)

\(\dfrac{\left(3+\sqrt{x-5}\right)\sqrt{x-5}-\left(x-14\right)-3\left(3+\sqrt{x-5}\right)}{3+\sqrt{x-5}}=0\)

\(3\sqrt{x-5}\sqrt{x-5}-\left(x-14\right)-3\left(3+\sqrt{x-5}\right)=0\)

\(3\sqrt{x-5}+x-5-\left(x-14\right)-9-3\sqrt{x-5}=0\)

\(x-5-x+14-9=0\)

\(0=0\)

\(x\in R,x\in\left[5,+\infty\right]\)

20 tháng 9 2017

a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)

\(\Leftrightarrow\sqrt{x+3}=2\)

\(\Leftrightarrow x+3=4\)

\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )

20 tháng 9 2017

c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )

\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)

\(\Leftrightarrow2\sqrt{x+5}=4\)

\(\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\)

\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )

Vậy.......

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Lời giải:

ĐK: \(x\geq 0; x\neq 9\)

PT tương đương:

\(\frac{(\sqrt{x}+2)(\sqrt{x}+3)-5\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{22}{x-9}\)

\(\Leftrightarrow \frac{-4x+20\sqrt{x}+6}{x-9}=\frac{22}{x-9}\)

\(\Rightarrow -4x+20\sqrt{x}+6=22\)

\(\Leftrightarrow -x+5\sqrt{x}-4=0\)

\(\Leftrightarrow x-5\sqrt{x}+4=0\)

\(\Leftrightarrow (\sqrt{x}-1)(\sqrt{x}-4)=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x}=1\rightarrow x=1\\ \sqrt{x}=4\rightarrow x=16\end{matrix}\right.\) (đều thỏa mãn)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............