Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dk \(x\ge0\)
ap dung bdt cosi ta co
\(\sqrt{x+3}+\frac{4x}{\sqrt{x+3}}\ge2\sqrt{4x}=4\sqrt{x}\)
dau = xay ra \(\Leftrightarrow\sqrt{x+3}=\frac{4x}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Rightarrow x=1\)(tm dk)
kl x=1 la no cua pt
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
1/ \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)
Đặt \(t+1=\sqrt{\frac{x+7}{3}}\)
\(\Leftrightarrow3t^2+6t-4=x\) từ đây ta có hệ
\(\hept{\begin{cases}3t^2+6t-4=x\\9x^2+18x-4=t\end{cases}}\)
Tới đây thì đơn giản rồi
2/ \(9x^2-x-4=2\sqrt{x+3}\)
\(\Leftrightarrow9x^2=x+3+2\sqrt{x+3}+1\)
\(\Leftrightarrow9x^2=\left(\sqrt{x+3}+1\right)^2\)
Tự làm nốt
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)\(2x^2+x+3=3x\sqrt{x+3}\)
ĐK:\(x\ge-3\)
\(pt\Leftrightarrow2x^2+x-3=3x\sqrt{x+3}-6\)
\(\Leftrightarrow2x^2+x-3=\frac{9x^2\left(x+3\right)-36}{3x\sqrt{x+3}+6}\)
\(\Leftrightarrow2x^2+x-3-\frac{9x^3+27x^2-36}{3x\sqrt{x+3}+6}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)-\frac{9\left(x-1\right)\left(x+2\right)^2}{3x\sqrt{x+3}+6}=0\)
\(\Leftrightarrow\left(x-1\right)\left[2x+3-\frac{9\left(x+2\right)^2}{3x\sqrt{x+3}+6}\right]=0\)
.....................
b) sai đề hay vô nghiệm nhỉ
Chứng minh : A = 5 + 5 mũ 2 + 5 mũ 3 + . . . + 5 mũ 9+ 5 mũ 10 chia hết cho 6 giúp mk với nha
\(DK:x\ge\frac{2}{3}\)
\(\Leftrightarrow5\left(\sqrt{4x+1}-3\right)-5\left(\sqrt{3x-2}-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\frac{20\left(x-2\right)}{\sqrt{4x+1}+3}-\frac{15\left(x-2\right)}{\sqrt{3x-2}+2}-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1=0\end{cases}}\)
Vi \(\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1< 0\left(\forall x\ge\frac{2}{3}\right)\)
Vay nghiem cua PT la \(x=2\)