\(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^3+8}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

b. Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath

14 tháng 7 2017

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ

13 tháng 7 2016

a) 4

b) 10

c)4

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)

\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)

\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)

b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì

\(\Rightarrow b^2-a^2=x^2-3x+2\)

Làm nốt 

12 tháng 11 2015

2) \(a^3=\left(\sqrt[3]{5+\sqrt{52}}+\sqrt[3]{5-\sqrt{52}}\right)^3\)

         \(=5+\sqrt{52}+5-\sqrt{52}+3.\sqrt[3]{\left(5+\sqrt{52}\right)\left(5-\sqrt{52}\right)}.a\)

       \(=10+3.\sqrt[3]{-27}.a\)

\(a^3+9a-10=0\Leftrightarrow\left(a-1\right)\left(a^2+10\right)=0\Rightarrow a=1\)

=> \(f\left(1\right)=1+1+1+1+........+1=2016\)

28 tháng 2 2020

\(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^2+8}\)

\(\Leftrightarrow\sqrt{2\left(x^2+8\right)}=5\)

\(\Leftrightarrow2\left(x^2+8\right)=25\)

\(\Leftrightarrow2x^2=9\Leftrightarrow x^2=\frac{9}{2}\Leftrightarrow x=\pm\frac{3}{\sqrt{2}}\)

Hok tốt

28 tháng 2 2020

\(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^2+8}\)

\(\Rightarrow\left[\sqrt{2}\left(x^2+8\right)\right]^2=\left(5\sqrt{x^2+8}\right)^2\)

\(\Leftrightarrow2\left(x^4+16x^2+64\right)=25\left(x^2+8\right)\)

\(\Leftrightarrow2x^4+32x^2+128=25x^2+200\)

\(\Leftrightarrow2x^4+7x^2-72=0\)

\(\Leftrightarrow x^4+\frac{7}{2}x^2-36=0\)

\(\Leftrightarrow x^4+2.x^2.\frac{7}{4}+\frac{49}{16}-\frac{49}{16}-36=0\)

\(\Leftrightarrow\left(x^2+\frac{7}{4}\right)^2-\frac{625}{16}=0\)

\(\Leftrightarrow\left(x^2+\frac{7}{4}+\frac{25}{4}\right)\left(x^2+\frac{7}{4}-\frac{25}{4}\right)=0\)

\(\Leftrightarrow\left(x^2+8\right)\left(x^2-\frac{9}{2}\right)=0\left(1\right)\)

Ta thấy \(x^2\ge0;\forall x\)

\(\Rightarrow x^2+8\ge8>0;\forall x\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x^2-\frac{9}{2}=0\)

\(\Leftrightarrow x^2=\frac{9}{2}\)

\(\Leftrightarrow x=\pm\frac{3}{\sqrt{2}}\)

Vậy tập hợp nghiệm của pt \(S=\left\{\frac{3}{\sqrt{2}};\frac{-3}{\sqrt{2}}\right\}\)