Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x5 - 2x3 ) - (2x2 - 4) =0
x3 (x2 - 2) - 2 (x2 - 2) =0
(x2 - 2)(x3 - 2) =0
=> x2 - 2 =0 => x=\(\sqrt{2}\)
=> x3 - 2 =0 => x=\(\sqrt[3]{2}\)
Đặt bt trong ngoặc đầu tiên = t
pt trở thành
\(t\left(t-2\right)-3=0\Leftrightarrow t^2-2t-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-1\end{matrix}\right.\)
với t=3, ta có:
\(x^2+2x-1=3\Leftrightarrow x^2+2x-4=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
t= -1 tương tự
\(x^5-2x^3-2x^2+4=0\)
\(x^3\left(x^2-2\right)-2\left(x^2-2\right)=0\)
\(\left(x^3-2\right)\left(x^2-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3-2=0\\x^2-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^3=2\\x^2=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\varnothing\left(x\ne0với\forall x\right)\\x=\varnothing\left(x\ne0với\forall x\right)\end{cases}}\)
\(x^5-2x^3-2x^2+4=0\)
\(\Leftrightarrow\left(x^5-2x^3\right)-\left(2x^2-4\right)=0\)
\(\Leftrightarrow x^3\left(x^2-2\right)-2\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^3-2\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow\hept{\orbr{\begin{cases}x^3-2=0\Rightarrow x^3=2\Rightarrow x=8\\x^2-2=0\Rightarrow x^2=2\Rightarrow x=4\end{cases}}}\)
Vậy \(x\in\left\{4;8\right\}\)
Đây là phương trình bậc 3
\(x^3-8-\left(x^2-4x+4\right)=0\Leftrightarrow x^3-8-x^2+4x-4=0\Leftrightarrow x^3-x^2+4x-12=0\Leftrightarrow x=2\)
Vậy phương trình có 1 nghiệm là x=2
x3 - 8 - (x2 - 4x + 4) = 0
<=> x3 - x2 + 4x - 8 - 4 = 0
<=> x3 - x2 + 4x - 12 = 0
<=> (x - 2)(x2 + x + 6) = 0
<=> x - 2 = 0 hoặc x2 + x + 6 khác 0
<=> x = 2
\(x^3-3x-2=0\)
\(\Leftrightarrow x^3-x-2x-2=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=2\end{array}\right.\)