\(x^2+4x+5=2\sqrt{2x+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Tự đặt đ/k

Ko viết lại đề

\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)=0

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

Tự giải tiếp nha :v, đúng thì tk nha :3

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
16 tháng 7 2019

\(a,\sqrt{4x^2-20x+25}+2x=5\)

    \(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

  \(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)

\(b,\sqrt{1-12x+36x^2}=5\)

  \(\Rightarrow6x-1=5\)

 \(\Rightarrow6x=6\Rightarrow x=1\) 

\(c,\sqrt{x^2+x}=x\)

  \(\Rightarrow x^2+x=x^2\)

\(\Rightarrow x=0\)   

16 tháng 7 2019

\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)

\(\Rightarrow-1=0\) (vô lý)

=> PT vô nghiệm 

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

7 tháng 8 2017

giúp mk bài này với

7 tháng 8 2017

câu 2 có thể là am-gm 2016 số 

26 tháng 10 2020

a) \(\sqrt{5x}=\sqrt{35}\)

ĐK : x ≥ 0

Bình phương hai vế

pt ⇔ 5x = 35 ⇔ x = 7 ( tm )

b) \(\sqrt{36\left(x-5\right)}=18\)

ĐK : x ≥ 5

Bình phương hai vế

pt ⇔ 36( x - 5 ) = 324

    ⇔ x - 5 = 9

    ⇔ x = 14 ( tm )

c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)

⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)

⇔ \(\sqrt{\left(4-8x\right)^2}=20\)

⇔ \(\left|4-8x\right|=20\)

⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)

⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

d) \(\sqrt{3-2x}\le\sqrt{5}\)

ĐK : x ≤ 3/2

Bình phương hai vế

bpt ⇔ 3 - 2x ≤ 5

⇔ -2x ≤ 2

⇔ x ≥ -1

Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2

26 tháng 10 2020

\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)

\(\Leftrightarrow5x=35\)

\(\Leftrightarrow x=7\left(tm\right)\)

vậy...

b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)

\(\Leftrightarrow6\sqrt{x-5}=18\)

\(\Leftrightarrow\sqrt{x-5}=3\)

\(\Leftrightarrow x-5=9\)

\(\Leftrightarrow x=14\left(tm\right)\)

vậy...

c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)

\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow\left|1-2x\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

vậy....

\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)

\(\Leftrightarrow3-2x< 25\)

\(\Leftrightarrow-2x< 22\)

\(\Leftrightarrow x>-11\)

\(\Rightarrow-11< x< 1.5\)

vạy.

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)