Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017
Xét:
1.Nếu \(x=2016\)hoặc \(x=2017\)thì thỏa mãn đề bài
2. Nếu \(x< 2016\)thì l\(x-2016\)l\(^{2016}\)>0, lx-2017l\(^{2017}\)>1
=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1 => vô nghiệm
3.Nếu x>2017 thì lx-2016l\(^{2016}\)>1,lx-2017l\(^{2017}\)>0
=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1=> vô nghiệm
Vậy phương trình có 2 nghiệm là ..................
Đặt 2x2+x-2015=a; x2-5x-2016=b
phương trình tương đương a2+4b2=4ab
=> a2-4ab+4b2=0
=> (a-2b)2=0
=> a=2b
vậy 2x2+x-2015=2*(x2-5x-2016)
=> x=\(\frac{-2017}{11}\)
nếu x<2017 thì x-2017<2017
vì tổng của các giá trị tuyệt đối không thể là số âm nên x<2017 loại.
xét \(x\ge2017\), ta có:\(\left|x-2014\right|=x-2014\\ \left|2x-2015\right|=2x-2015\\\left|3x-2016\right|=3x-2016\)
khi đó:
\(x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x=4028\\ \Leftrightarrow x=\dfrac{2014}{3}\left(loại\right)\)
vậy phương trình đã cho vô nghiệm.
\(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\)
Do \(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|\ge0\forall x\)
\(\Rightarrow x-2017\ge0\\ \Leftrightarrow x\ge2017\)
\(\Rightarrow\left\{{}\begin{matrix}x-2014\ge3>0\\2x-2015\ge2019>0\\3x-2016\ge4035>0\end{matrix}\right.\)
\(pt\Leftrightarrow\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\\ \Leftrightarrow x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x-6045=x-2017\\ \Leftrightarrow6x-x=-2017+6045\\ \Leftrightarrow5x=4028\\ \Leftrightarrow x=\dfrac{4028}{5}\\ \)
Vậy pt có nghiệm \(x=\dfrac{4028}{5}\)
Lời giải:
a.
PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$
Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$
Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.
b.
$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.
Vậy pt vô nghiệm.
c.
$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm
d.
$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$
Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm.
a, TK:
(x lẻ do \(2y^2-8y+3=2\left(y^2-4y\right)+3=x^2\) lẻ)
\(b,\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=9\\ \Leftrightarrow\left(x-2\right)^2+\left(y+2\right)^2=9\)
Vậy pt vô nghiệm do 9 ko phải tổng 2 số chính phương
Ta có :
\(\left(x^2-2014\right)\left(x^2-2015\right)\left(x^2-2016\right)\)\(=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-2014=0\\x^2-2015=0\\x^2-2016=0\end{cases}}\)
Giải (1) :
\(x^2-2014=0\)
\(\hept{\begin{cases}x=\sqrt{2014}\\x=-\sqrt{2014}\end{cases}}\)
Giải (2) :
\(x^2-2015=0\)
\(\hept{\begin{cases}x=\sqrt{2015}\\x=-\sqrt{2015}\end{cases}}\)
Giải (3) :
\(x^2-2016=0\)
\(\hept{\begin{cases}x=\sqrt{2016}\\x=-\sqrt{2016}\end{cases}}\)
Vậy nghiệm nhỏ nhất của phương trình là \(x=-\sqrt{2016}\)
Chú ý : \(x^2-2014=0\)(1)
\(x^2-2015=0\)(2)
\(x^2-2016=0\)(3)
tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi
\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)
\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)
\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)
\(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2017}=1\)
Có: \(\left|x-2015\right|^{2016}\ge0;\left|x-2016\right|^{2017}\ge0\)
TH1: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=1\\\left|x-2016\right|^{2017}=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=1\\\left|x-2016\right|=0\end{cases}}\)
THa: \(x-2015=-1\Rightarrow x=2014\)
Thay vào: \(2014-2016\ne0\) ( loại)
THb: \(x-2015=1\Rightarrow x=2016\)
Thay vào: \(2016-2016=0\)( chọn )
TH2: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=0\\\left|x-2016\right|^{2017}=1\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=0\\\left|x-2016\right|=1\end{cases}}\)
THc: \(x-2016=-1\Rightarrow x=2015\)
Thay vào: \(2015-2015=0\)( chọn )
THd: \(x-2016=1\Rightarrow x=2017\)
Thay vào: \(2017-2015\ne0\)
Vậy: x = 2016 hoặc x = 2015
x=2015