Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a - b =3
a2 - b2 = 15
=> a+b = 5
=> a =4 ; b = 1
=> 25 - x2 = 16 => x = + -3 thỏa mãn 10 -x2 =1
a) \(\sqrt{2x-1}=\sqrt{5}\)
ĐK : \(x\ge\frac{1}{2}\)
Bình phương hai vế
pt <=> \(2x-1=25\)
<=> \(2x=26\)
<=> \(x=13\left(tm\right)\)
Vậy S = { 13 }
b) \(\sqrt{4-5x}=12\)
ĐK : \(x\le\frac{4}{5}\)
Bình phương hai vế
pt <=> \(4-5x=144\)
<=> \(-5x=140\)
<=> \(x=-28\left(tm\right)\)
Vậy S = { -28 }
c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]>
<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)
<=> \(\left|x+3\right|=3x-1\)
<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)
Vậy S = { 2 }
d) \(2\sqrt{x}\le\sqrt{10}\)
ĐK : \(x\ge0\)
Bình phương hai vế
bpt <=> \(4x\le10\)
<=> \(x\le\frac{10}{4}\)
Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)
a) \(ĐKXĐ:x\ge\frac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=3\)
b) \(ĐKXĐ:x\le\frac{4}{5}\)
\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )
\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=-28\)
c) \(ĐKXĐ:x\ge\frac{1}{3}\)
\(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)
thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)
\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)
\(\Leftrightarrow x=\frac{-1}{2}\)( không thỏa mãn ĐKXĐ )
+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)
thì \(\left|x+3\right|=x+3\)
\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=2\)
\(a,\sqrt{4x^2-20x+25}+2x=5\)
\(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)
\(b,\sqrt{1-12x+36x^2}=5\)
\(\Rightarrow6x-1=5\)
\(\Rightarrow6x=6\Rightarrow x=1\)
\(c,\sqrt{x^2+x}=x\)
\(\Rightarrow x^2+x=x^2\)
\(\Rightarrow x=0\)
\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)
\(\Rightarrow-1=0\) (vô lý)
=> PT vô nghiệm
ĐKXĐ:....
\(\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}\)
\(\Rightarrow4-\sqrt{1-x}=2-x\)
\(\Rightarrow\sqrt{1-x}=2+x\)
\(\Rightarrow1-x=4+4x+x^2\)
\(\Rightarrow1-x-4-4-x^2=0\)
\(\Rightarrow x^2+x+7=0\)
Đến đây dễ rồi làm nốt nha bạn !
ĐKXĐ:....
\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}4−1−x=2−x
\Rightarrow4-\sqrt{1-x}=2-x⇒4−1−x=2−x
\Rightarrow\sqrt{1-x}=2+x⇒1−x=2+x
\Rightarrow1-x=4+4x+x^2⇒1−x=4+4x+x2
\Rightarrow1-x-4-4-x^2=0⇒1−x−4−4−x2=0
\Rightarrow x^2+x+7=0⇒x2+x+7=0
Đến đây dễ rồi làm nốt nha bạn !
a) \(\sqrt{25-x^2}-\sqrt{10-x^2}=3\) (*)
Đk: \(-\sqrt{10}\le x\le\sqrt{10}\)
(*) \(\Leftrightarrow\sqrt{25-x^2}=3+\sqrt{10-x^2}\Leftrightarrow25-x^2=19-x^2+6\sqrt{10-x^2}\)
\(\Leftrightarrow6\sqrt{10-x^2}=6\Leftrightarrow\sqrt{10-x^2}=1\Leftrightarrow\left[{}\begin{matrix}x=-3\left(N\right)\\x=3\left(N\right)\end{matrix}\right.\)
Kl: x = +- 3
b) \(\sqrt{x^2-x-6}+x^2-x-18=0\) (*)
đk: \(\left[{}\begin{matrix}x\le-2\\x\ge3\end{matrix}\right.\)
(*) \(\Leftrightarrow x^2-x-6+\sqrt{x^2-x-6}-12=0\)
Đặt \(t=\sqrt{x^2-x-6}\Rightarrow t^2=x^2-x-6\) (t >/ 0)
phương trình (*) trở thành : \(t^2+t-12=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(N\right)\\t=-4\left(L\right)\end{matrix}\right.\)
Với t=3. ta có: \(\sqrt{x^2-x-6}=3\Leftrightarrow x^2-x-15=0\Leftrightarrow x=\dfrac{1\pm\sqrt{61}}{2}\left(N\right)\)
Kl: \(x=\dfrac{1\pm\sqrt{61}}{2}\)
c) \(\sqrt{x-2009}+\sqrt{y+2008}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\) (*)
Đk: \(\left\{{}\begin{matrix}x\ge2009\\y\ge-2008\\z\ge2\end{matrix}\right.\)
(*) \(\Leftrightarrow2\sqrt{x-2009}+2\sqrt{y+2008}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2009-2\sqrt{x-2009}+1\right)+\left(y+2008-2\sqrt{y+2008}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{y+2008}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2009}=1\\\sqrt{y+2008}=1\\\sqrt{z-2}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2010\left(N\right)\\y=-2007\left(N\right)\\z=3\left(N\right)\end{matrix}\right.\)
Kl: x= 2010, y= -2007, z=3
\(a,\sqrt{x}=x\) \(\text{ĐKXĐ: }x\ge0\)
\(\Leftrightarrow x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}\text{(Thỏa mãn ĐKXD)}}\)
\(b,\sqrt{x-10\sqrt{x}+25}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-5\right)^2}=3\)
\(\Leftrightarrow|\sqrt{x}-5|=3\)
\(\Leftrightarrow\sqrt{x}-5=\pm3\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5=3\\\sqrt{x}-5=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=8\\\sqrt{x}=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=64\\x=4\end{cases}}\)