Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(\frac{5-x}{x+1}\right)\left(x+\frac{5-x}{x+1}\right)=6\)
\(x.\frac{5-x}{x+1}.\left(x+\frac{5-x}{x+1}\right)=6\)
\(\Leftrightarrow\frac{x^2\left(5-x\right)}{x+1}+\frac{x\left(5-x\right)^2}{\left(x+1\right)^2}=6\)
\(\Leftrightarrow x^2\left(5-x\right)\left(x+1\right)+x\left(5-x\right)^2=6\left(x+1\right)^2\)
\(\Leftrightarrow5x^3-5x^2-x^4+25x=6x+12x+6\)
\(\Leftrightarrow5x^3-5x^2-x^4+25x-6x^2-12x-6=0\)
\(\Leftrightarrow5x^3-11x^2-x^4+13x-6=0\)
\(\Leftrightarrow\left(x^3-4x^2+7x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+3\right)\left(x-2\right)\left(x-1\right)=0\)
Mà \(x^2-2x+3\ne0\) nên:
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Đặt \(t=\sqrt{x}+\frac{1}{\sqrt{x}}\)
.............. tự giải típ
\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)
\(=-1+\sqrt{100}\)
\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)
\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)