Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x - 3 > 3(x - 2)
⇔ 2x - 3 > 3x - 6
⇔ 2x - 3x > -6 + 3
⇔ -x > -3
⇔ x < 3
Vậy S = {x | x < 3}
b) (12x + 1)/12 ≤ (9x + 1)/3 - (8x + 1)/4
⇔ 12x + 1 ≤ 4(9x + 1) - 3(8x + 1)
⇔ 12x + 1 ≤ 36x + 4 - 24x - 3
⇔ 12x - 36x + 24x ≤ 4 - 3 - 1
⇔ 0x ≤ 0 (luôn đúng với mọi x)
Vậy S = R
a: =>2x-3>3x-6
=>-x>-3
=>x<3
b: =>12x+1<=36x+4-24x-3
=>12x+1<=12x+1
=>0x<=0(luôn đúng)
\(x\left(x-2\right)+x-2=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(x^2-2x+1=9\\ \Leftrightarrow\left(x-1\right)^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x-1=-3\\x-1=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
\(7x^2=2x\\ \Leftrightarrow7x^2-2x=0\\ \Leftrightarrow x\left(7x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\7x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{7}\end{matrix}\right.\)
\(x^2-6x=8\\ \Leftrightarrow x^2-6x-8=0\\ \left(x^2-6x+9\right)-17=0\\ \Leftrightarrow\left(x-3\right)^2-\sqrt{17^2}=0\\ \Leftrightarrow\left(x-3-\sqrt{17}\right)\left(x-3+\sqrt{17}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{17}=0\\x-3+\sqrt{17}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{17}\\x=3-\sqrt{17}\end{matrix}\right.\)
a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)
=>8x+4-18x+3=2x+1
=>-10x+7=2x+1
=>-12x=-6
hay x=1/2
b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)
=>5x-21=6x
=>-x=21
hay x=-21
\(=x^2+6x+9-17=\left(x+3\right)^2-17=\left(x+3-\sqrt{17}\right)\left(x+3+\sqrt{17}\right)\)
\(\left(8x+5\right)\left(8x+7\right)\left(8x+6\right)^2=72\)
Đặt \(8x+5=t\left(t\ge0\right)\)
\(t\left(t+2\right)\left(t+1\right)^2-72=0\)
\(\Leftrightarrow t\left(t+1\right)\left(t+2\right)\left(t+1\right)-72=0\)
\(\Leftrightarrow\left(t^2+t\right)\left(t^2+3t+2\right)-72=0\)
\(\Leftrightarrow t^4+3t^3+2t^2+t^3+3t^2+2t-72=0\)
\(\Leftrightarrow t^4+4t^3+5t^2+2t-72=0\)
\(\Leftrightarrow\left(t^2+2t+9\ne0\right)\left(t+4\right)\left(t-2\right)=0\Leftrightarrow t=-4;2\)
hay \(8x+5=-4\Leftrightarrow x=-\frac{9}{8}\)( trường hợp 1 )
\(8x+5=2\Leftrightarrow x=-\frac{3}{8}\)( trưởng hợp 2 )
Vậy tập nghiệm của phương trình là S = { -9/8 ; -3/8 }
\(\left(8x+5\right)\cdot\left(8x+7\right)\cdot\left(8x+6\right)^2=72\)
Đặt \(t=8x+6\)
\(Pt\Leftrightarrow\left(t-1\right)\left(t+1\right)t^2-72=0\)
\(\Leftrightarrow\left(t^2-1\right)t^2-72=0\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\Leftrightarrow\orbr{\begin{cases}t^2=9\\t^2=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}8x+6=3\\8x+6=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{8}\\x=-\frac{9}{8}\end{cases}}}\)
Vậy....
\(\Leftrightarrow\left(x^2-6x+9\right)^2-1-15\left(x^2-6x+10\right)=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-6x+10\right)-15\left(x^2-6x+10\right)=0\)
\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2-6x-7\right)=0\)
\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+x-7x-7\right)=0\)
\(\Leftrightarrow\left(x^2-6x+10\right)\left(x+1\right)\left(x-7\right)=0\)
\(Vi:x^2-6x+10=0\Leftrightarrow\left(x-3\right)^2+1>0,\forall x\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(hay:x-7=0\Leftrightarrow x=7\)
\(V...\)
\(:)\)
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)
\(\Leftrightarrow\)\(6x^2-13x+6=6x^2+43x+7\)
\(\Leftrightarrow\)\(-56x=1\)
\(\Leftrightarrow\)\(x=\frac{-1}{56}\)
\(\Rightarrow\)\(S=\left\{-\frac{1}{56}\right\}\)
Study well !
2x - | 6x - 7 | = -x + 8
* x > 0
Phương trình trở thành : 2x - 6x - 7 = -x + 8
<=> 2x - 6x + x = 8 + 7
<=> -3x = 15
<=> x = -5 ( không tmđk vì < 0 )
* x < 0
Phương trình trở thành : 2x - (-6x - 7) = -x + 8
<=> 2x + 6x + 7 = -x + 8
<=> 2x + 6x + x = 8 - 7
<=> 9x = 1
<=> x = 1/9 ( không tmđk vì > 0 )
Vậy phương trình vô nghiệm
Bài làm
~ Bài bạn Rin thiếu ngoặc khi xét biểu thức nếu vào phương trình đầu ~
*Nếu 6x - 7 > 0 <=> x > 7/6
----> | 6x - 7 | = 6x - 7
=> Phương trình: 2x - ( 6x - 7 ) = -x + 8
<=> 2x - 6x + 7 = -x + 8
<=> -4x + 7 + x - 8 = 0
<=> -3x - 1 = 0
<=> -3x = 1
<=> x = -1/3 ( Không thỏa mãn )
*Nếu 6x - 7 < 0 <=> x > 7/6
----> | 6x - 7 | = -( 6x - 7 ) = 7 - 6x
=> Phương trình: 2x - ( 7 - 6x ) = -x + 8
<=> 2x - 7 + 6x + x - 8 = 0
<=> 9x - 15 = 0
<=> x = 15/9 ( Thỏa mãn )
Vậy x = 15/9 là nghiệm phương trình.