K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

a, Nghiệm = -2

b,Ngiệm = -5 và 3

c,Nghiện = -1

21 tháng 7 2016

có cách giả không bạn

28 tháng 1 2018

a) x3- 6x2+11x - 66 = 0

⇔x2( x - 6) + 11( x - 6) = 0

⇔( x - 6)( x2 + 11 ) = 0

Do : x2 + 11 > 0 ∀x

⇒ x - 6 = 0

⇒ x = 6

Vậy,...

b) x3- x2- 21x + 45=0

⇔ x3 - 3x2 + 2x2 - 6x - 15x + 45 = 0

⇔ x2( x - 3) + 2x( x - 3) - 15( x - 3) = 0

⇔ ( x - 3)( x2 + 2x - 15 ) = 0

⇔ ( x - 3)( x2 - 3x + 5x - 15 ) = 0

⇔ ( x - 3)[ x( x - 3) + 5( x - 3) ] = 0

⇔ ( x - 3)2( x + 5) = 0

⇔ x = 3 hoặc x = -5

Vậy,...

19 tháng 12 2015

2)  2x4-21x3+74x2-105x+50=0

<=>(2x4-2x3)+(-19x3+19x2)+(55x2-55x)+(-50x+50)=0

<=>2x3.(x-1)-19x2.(x-1)+55x.(x-1)-50.(x-1)=0

<=>(x-1)(2x3-19x2+55x-50)=0

<=>(x-1)[(2x3-20x2+50x)+(x2+5x-50)]=0

<=>(x-1)[2x.(x-5)2+(x2-5x+10x-50)]=0

<=>(x-1){2x.(x-5)2+[x.(x-5)+10.(x-5)]}=0

<=>(x-1)[2x.(x-5)2+(x-5)(x+10)]=0

<=>(x-1)(x-5)(2x2-10x+x+10)=0

<=>(x-1)(x-5)(2x2-5x-4x+10)=0

<=>(x-1)(x-5)[x.(2x-5)-2.(2x-5)]=0

<=>(x-1)(x-5)(x-2)(2x-5)=0

<=>x=1 hoặc x=5 hoặc x=2 hoặc x=5/2

(x^3-9x^2+27x-27)+(x^2-6x+9)=0

(x-3)^3+(x-3)^2=0

(x-3)^2(x-2)=0

<=>x-3=0 hoặc x-2=0

<=>x=3 hoặc x=2

câu a) x=-3 nữa nha

30 tháng 3 2020

a) x^4 - 3x^3 + 3x - 1 = 0

<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0

<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0

<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

26 tháng 2 2016

bạn đã học giải pt bậc 2 chưa có công thức bài nào cũng giải đc

27 tháng 2 2016

a) x^2+3x=0

<=> x(x+3)=0

<=> x=0 hoặc x+3=0

<=> x=0 hoặc x=-3

S={0;-3}

b) x^2-x-42=0

<=> x^2-7x+6x-42=0

<=> x(x-7)+6(x-7)=0

<=> (x-7)(x+6)=0

<=> x-7=0 hoac x+6=0

<=> x=7,x=-6

c) ,d) tương tự

e) 2x^3+3x^2-x-1=0

<=> 2x^3+x^2+2x^2+x-2x-1=0

<=> x^2(2x+1)+x(2x+1)-(2x+1)=0

<=> (2x+1)(x^2+x-1)=0

<=>2x+1=0 hoặc x^2+x-1=0

<=> x=-1/2 ,x=-1+căn5/2,x=-1-căn5/2

19 tháng 3 2020

1) x2-1=0 <=> x2=1 <=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

2) x2+1=0

<=> x2=-1

Mà x2 >=0 với mọi x; -1<0

=> không có x thỏa mãn

3) \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

<=> x2(x-3) +2x(x-3)-15(x-3)=0

<=> (x-3)(x2 +2x-15)=0

<=> (x-3)(x2+5x-3x-15)=0

<=> (x-3)[x(x+5)-3(x+5)]=0

<=> (x-3)2(x+5)=0

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^2\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

1) Sửa đề: \(x^3-x^2+2=0\)

\(\Leftrightarrow x^3+x^2-2x^2-2x+2x+2=0\)

\(\Leftrightarrow x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+2\right)=0\)(1)

Ta có: \(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+1\ge1\ne0\forall x\)(2)

Từ (1) và (2) suy ra \(x+1=0\)

hay x=-1

Vậy: x=-1

2) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-2x-10x+5=0\)

\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

3) Ta có: \(x^4+6x^2+8=0\)

\(\Leftrightarrow x^4+4x^2+2x^2+8=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)+2\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2+2\right)=0\)(3)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+4\ge4\ne0\forall x\)(4)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\ne0\forall x\)(5)

Từ (3), (4) và (5) suy ra phương trình \(x^4+6x^2+8=0\) vô nghiệm

Vậy: x∈∅

4) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3+5x^2-6x^2-30x+9x+45=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

Vậy: x∈{-5;3}