\(x^2+2=2\sqrt{x^3+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

\(DK:\hept{\begin{cases}x^3+x^2-1\ge0\\x^3+x^2+2\ge0\end{cases}}\)

Dat 

\(\hept{\begin{cases}\sqrt{x^3+x^2-1}=a\\\sqrt{x^3+x^2+2}=b\end{cases}\left(a,b\ge0\right)}\)

Ta lap HPT

\(\hept{\begin{cases}a+b=3\\a^2-b^2=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=3\\-\left(a+b\right)\left(a-b\right)=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=3\\b-a=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=3-b\\b=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^3+x^2-1}=1\\\sqrt{x^3+x^2+2}=2\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(1\right)\\x^2-2x-2=0\left(2\right)\end{cases}}\)

Xet PT(2) ta co:

\(\Delta^`=\left(-1\right)^2-1.\left(-2\right)=3\)

\(\Rightarrow\hept{\begin{cases}x_1=1+\sqrt{3}\\x_2=-1-\sqrt{3}\end{cases}}\)

Thay \(x_1;x_2\)vao thay khong thoa man

Vay nghiem cua PT la \(x=1\)

23 tháng 9 2019

Cách cua bn Mai Link rất hay. Các bn góp ý xem mk làm thế này có được ko nha

Đặt \(\hept{\begin{cases}\sqrt{x^3+x^2+2}=a\\\sqrt{x^3+x^2-1}=b\end{cases}}\)

theo bài ra ta có 

a+b= 3   (1) => (a-b)(a+b)=3(a-b)

<=>a2-b2=3(a-b)

<=> 3=3(a-b) <=> a-b=1   (2)

Từ (1),(2) => a=2,b=1

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^3+x^2+2}=2\\\sqrt{x^3+x^2-1}=1\end{cases}}\Leftrightarrow x^3+x^2-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x=1\)(do x2+2x+2>0)

Vậy ......

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

19 tháng 5 2018

Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần

12 tháng 10 2016

1/ \(x^3-x^2-x=\frac{1}{3}\Leftrightarrow3x^3-3x^2-3x=1\Leftrightarrow x^3+3x^2+3x+1=4x^3\)

\(\Leftrightarrow\left(x+1\right)^3=\left(\sqrt[3]{4}x\right)^3\Leftrightarrow x+1=\sqrt[3]{4}x\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

2/ ĐKXĐ \(x\ge1\)

 \(3+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\Leftrightarrow3=\sqrt{\left(\sqrt{x-1}-1\right)^2}\Leftrightarrow\left|\sqrt{x-1}-1\right|=3\)

Tới đây xét trường hợp rồi giải :)

13 tháng 7 2017

\(Áp-dụng-BĐT-\left(a+b\right)\le\sqrt{2\left(a^2+b^2\right)}=>VT=x+\sqrt{2-x^2}\le2\\ VP=4y^2+4y+1\ge2\\ =>1\ge VT=VP\ge1\\ =>2y+1=0vax=\sqrt{2-x^2}.\)

17 tháng 9 2018

\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)

\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)

\(\Leftrightarrow x+3+4x-4\sqrt{x+3}.\sqrt{x}=2x+2+3x+1-2\sqrt{2x+2}.\sqrt{3x+1}\)

\(\Leftrightarrow2\sqrt{x+3}.\sqrt{x}=\sqrt{2x+2}.\sqrt{3x+1}\)

\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)

\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)

\(\Leftrightarrow x=1\)

23 tháng 8 2019

Bổ sung tiếp bài của dưới

\(4\left(x^2+3x\right)-6x^2-8x-2=0\)

\(\Rightarrow4x^2-12x-6x^2-8x-2=0\)

\(\Rightarrow-2x^2+4x-2=\left(-2\right)\left(x^2-2x+1\right)=0\)

\(\Rightarrow-2\left(x-1\right)^2=0\Leftrightarrow x=1\)

a,    tìm trong nâng cao phát triển tập 2

b,

ta thấy VT là 1 tam thức bậc 2 nên ta đặt \(\sqrt{\frac{x+3}{2}}=ay+b\)

<=>x+3=2a2y2+4aby+2b2

<=>ax+3a=2a3y2+4a2by+2ab2

<=>ax+3a-2ab2=2a3y2+4a2by

\(\Leftrightarrow\hept{\begin{cases}2x^2+4x=ay+b\\2a^3y^2+4a^2by=ax+3a-2ab^2\end{cases}}\)

đưa hệ này về hệ đối xứng thì ta có:\(\hept{\begin{cases}a^3=1\\a^2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)

\(\Rightarrow\sqrt{2x-1}=y+1\)

sau đó đưa về hệ đối xứng là được

24 tháng 7 2017

Trên tia đối tia CB lấy F sao cho AM = 2CF

\(\Delta DCF\approx\Delta DAM\left(c-g-c\right)\)

\(\Rightarrow DM=2DF\)   và  \(\widehat{ADM}=\widehat{CDF}\)  nên  \(\widehat{MDF}=90^0\)  hay  \(\Rightarrow\widehat{EDF}+\widehat{MDE}=90^0\)  (1)

Lại có \(\widehat{DEC}+\widehat{EDC}=90^0\)  \(\Rightarrow\widehat{DEC}+\widehat{MDE}=90^0\)    (2)

(1), (2) => \(\widehat{EDF}=\widehat{DEC}\)  nên DF = EF

Lại có  \(DM=2DF=2EF=2CF+2EC=AM+2EC\)

Done!