Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Điều kiện b tự làm nhé
Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x+1}=a\left(a\ge0\right)\\2\sqrt{x^2-x+1}=b\left(b\ge0\right)\end{cases}}\)
Ta có: \(a^2-b^2=9x-3\)từ đó pt ban đầu thành
\(a-b=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\1=a+b\end{cases}}\)
Tới đây thì đơn giản rồi b làm tiếp nhé
Bài 2:Giải phương trình
a,\(\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12\)
b.\(\sqrt{x^2-6x+9}=2x-1\)
phần a đây nhé \(a,\sqrt{4\left(2x-1\right)}-2\sqrt{9\left(2x-1\right)}+2\sqrt{16\left(2x-1\right)}=12\Leftrightarrow2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12\Leftrightarrow4\sqrt{2x-1}=12\Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow\left\{{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
ĐK: \(x\ge\frac{1}{3}\)
Pt đã cho tương đương với \(\left(18x^2-2x-\frac{8}{3}\right)+9\left(\sqrt{x-\frac{1}{3}}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left(18x-8\right)\left(x+\frac{1}{3}\right)+9\frac{x-\frac{1}{3}-\frac{1}{9}}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}=0\)
\(\Leftrightarrow\left(x-\frac{4}{9}\right)\text{[}18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{2}}\text{]}=0\Rightarrow x=\frac{4}{9}\)
CM: Với \(x\ge\frac{1}{3}\Rightarrow18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}>0\)
Pt đã cho có nghiệm \(x=\frac{4}{9}\)
a,
ĐK : \(x\ge\frac{-15}{2}\)
Phương trình đã cho tương đương với
\(\sqrt{2x+15}=32x^2+32x-20\)
\(\Leftrightarrow2x+15=\left(32x^2+32x-20\right)^2\)\(\Leftrightarrow1024x^4+2048x^3-256x^2-1282x+385=0\)
Phương trình này có 2 nghiệm là \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-11}{8}\end{cases}}\) nên dễ dàng có được
⇔ ( 16x2 + 14x − 11 ) ( 64x2 + 72x − 35 ) = 0
Kết hợp với điều kiên bài toán ta có nghiệm của phương trình là \(x=\frac{1}{2};x=\frac{-9-\sqrt{221}}{16}\)
b,\(x^2=\sqrt{2-x}+2\)
ĐK \(x\le2\)
\(PT\Leftrightarrow\sqrt{2-x}=x^2-2\)
\(\Leftrightarrow2-x=\left(x^2-2\right)^2=x^4-4x^2+4\)
\(\Leftrightarrow x^4-4x^2+x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\)
Vì\(x^2-x-1>0\)nên
\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}\left(Tm\right)}}\)
a) \(\sqrt{x^2-9}-\sqrt{4x-12}=0\) ĐK: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy x = 3
b) \(\sqrt{1-x}+\sqrt{x}=1\) ĐK: \(0\le x\le1\)
\(\Leftrightarrow1-x+x+2\sqrt{x\left(1-x\right)}=1\)
\(\Leftrightarrow x\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) (Nhận)
c) \(\sqrt{x+3}+\sqrt{x+8}=5\) ĐK: \(x\ge-3\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+3}\ge0\\b=\sqrt{x+8}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\b^2-a^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\b-a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
\(\Leftrightarrow x=1\) (Nhận)
d) \(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\) ĐK: \(-\dfrac{1}{2}\le x\le0\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
\(\Leftrightarrow1-2x=27x\)
\(\Leftrightarrow x=\dfrac{1}{29}\) (Nhận)
\(ĐKXĐ:x\ge-1\)
Ta có : \(\sqrt{x+1}=32x^3+48x^2+18x+1\)
\(\Leftrightarrow\sqrt{x+1}-1=32x^3+48x^2+18x\)
\(\Leftrightarrow\frac{\left(x+1\right)-1^2}{\sqrt{x+1}+1}=2x.\left(16x^2+24x+9\right)\)
\(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}-2x\left(4x+3\right)^2=0\)
\(\Leftrightarrow x.\left[\frac{1}{\sqrt{x+1}+1}-2.\left(4x+3\right)^2\right]=0\) (*)
Với mọi \(x\inĐKXD\) thì \(2.\left(4x+3\right)^2>\frac{1}{\sqrt{x+1}+1}\) nên từ (*) suy ra :
\(x=0\) ( Thỏa mãn ĐKXĐ )
Vậy pt có nghiệm duy nhất \(x=0\)