Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(x\ge0\)
Ta có : \(\sqrt{3x}-\sqrt{27}+\sqrt{75x}=3\Leftrightarrow\sqrt{x}\left(\sqrt{3}+\sqrt{75}\right)=3+\sqrt{27}\)
\(\Leftrightarrow\sqrt{x}=\frac{3+\sqrt{27}}{\sqrt{3}+\sqrt{75}}=\frac{\sqrt{3}+3}{6}\)
\(\Leftrightarrow x=\frac{\left(3+\sqrt{3}\right)^2}{36}\)
b) ĐKXĐ : \(x\ge1\)
\(\sqrt{x-1}-\sqrt{4x-4}+\sqrt{9x-9}=10\)
\(\Leftrightarrow\sqrt{x-1}-\sqrt{4.\left(x-1\right)}+\sqrt{9.\left(x-1\right)}=10\)
\(\Leftrightarrow\sqrt{x-1}-2\sqrt{x-1}+3\sqrt{x-1}=10\)
\(\Leftrightarrow\sqrt{x-1}=5\Leftrightarrow x=26\) (TMĐK)
c) ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(\sqrt{2x+1}+\sqrt{18x+9}-\sqrt{50x+25}=-3\)
\(\Leftrightarrow\sqrt{2x+1}+\sqrt{9\left(2x+1\right)}-\sqrt{25\left(2x+1\right)}=-3\)
\(\Leftrightarrow\sqrt{2x+1}+3\sqrt{2x+1}-5\sqrt{2x+1}=-3\)
\(\Leftrightarrow0=-3\) (Vô lí - loại)
Vậy pt vô nghiệm.
\(\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\) (bình phương 2 vế)
\(\Leftrightarrow x=26\)
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)
Vậy..........
b) ĐK: $x\geq 0$
PT $\Leftrightarrow (\sqrt{x}-3)^2=0$
$\Leftrightarrow \sqrt{x}-3=0$
$\Leftrightarrow x=9$ (thỏa mãn)
c) ĐK: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$
$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$
$\Leftrightarrow 3\sqrt{x-3}=7$
$\Leftrightarrow x-3=(\frac{7}{3})^2$
$\Rightarrow x=\frac{76}{9}$
d)
ĐK: $x\geq \frac{-1}{2}$
PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$
$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$
$\Leftrightarrow 3\sqrt{2x+1}=6$
$\Leftrightarrow \sqrt{2x+1}=2$
$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)
b/
\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}=1;\text{ }\sqrt{y-2}=2;\text{ }\sqrt{z-3}=3\)
\(\Leftrightarrow x=2;\text{ }y=6;\text{ }z=12\)
ĐKXĐ:.............
1.\(\sqrt{x^2-6x+9}=2x-1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-1\)
\(\Leftrightarrow\left|x-3\right|=2x-1\)
................
\(2)\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Leftrightarrow\left|\sqrt{x}+2\right|=5x+2\)
3) \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=4\)
\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=4\)