Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
ĐKXĐ: $6\geq x\geq \frac{-1}{3}$
PT $\Leftrightarrow (\sqrt{3x+1}-4)+(1-\sqrt{6-x})+(3x^2-14x-5)=0$
$\Leftrightarrow \frac{3(x-5)}{\sqrt{3x+1}+4}+\frac{x-5}{\sqrt{6-x}+1}+(3x+1)(x-5)=0$
$\Leftrightarrow (x-5)\left[\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+(3x+1)\right]=0$
Với $x$ thuộc đkxđ, dễ thấy biểu thức trong ngoặc vuông $>0$
$\Rightarrow x-5=0$
$\Leftrightarrow x=5$
Bài 3:
PT $3x=\sqrt{x^2+12}-\sqrt{x^2+5}+5>0$
$\Rightarrow x>0$
Lại có:
PT $\Leftrightarrow \sqrt{x^2+12}-4=3(x-2)+(\sqrt{x^2+5}-3)$
$\Leftrightarrow \frac{x^2-4}{\sqrt{x^2+12}+4}=3(x-2)+\frac{x^2-4}{\sqrt{x^2+5}+3}$
$\Leftrightarrow (x-2)\left[\frac{x+2}{\sqrt{x^2+12}+4}-3-\frac{x+2}{\sqrt{x^2+5}+3}\right]=0$
Với $x>0$, dễ thấy:
$\frac{x+2}{\sqrt{x^2+5}+3}+3>\frac{x+2}{\sqrt{x^2+12}+4}$ nên biểu thức trong ngoặc vuông âm.
Do đó $x-2=0\Leftrightarrow x=2$ (tm)
Bài 1:
\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)
=>-2x+3m-4+20x-25=0
=>18x+3m-29=0
Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)
=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)
=>4-48m+64<=0
=>-48m+68<=0
=>-48m<=-68
=>m>=17/12
Bấm MODE nhập 5 nhập 3
a, bấm 5 = -3 = -7 = ta được \(x_1=\dfrac{3+\sqrt{149}}{10};x_2=\dfrac{3-\sqrt{149}}{10}\)
Tương tự cho các câu còn lại
1: \(\Leftrightarrow\left(x+4\right)^2+\sqrt{x}-6x-14x=0\)
\(\Leftrightarrow\left(x+4\right)^2+\sqrt{x}-20x=0\)
\(\Leftrightarrow\left(x+4+5\sqrt{x}\right)\left(x+4-4\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
=>x=4
2: \(\Leftrightarrow\left(x+2\right)^2+6\sqrt{x}+8x-4\sqrt{x}-4=0\)
\(\Leftrightarrow\left(x+2\right)^2+2\sqrt{x}+8x-4=0\)
\(\Leftrightarrow x^2+4x+4+2\sqrt{x}+8x-4=0\)
\(\Leftrightarrow x^2+12x+2\sqrt{x}=0\)
=>x=0
a/ ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)
b/ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)
c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)
Thay \(x=1\) vào pt thấy ko thỏa mãn
Vậy pt vô nghiệm
d/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)
b)\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\\sqrt{x^2-3x+8}=x-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=\left(x-4\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=x^2-8x+16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\5x=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x=\dfrac{8}{5}\left(loại\right)\end{matrix}\right.\)=> pt vô nghiệm
c)\(\left\{{}\begin{matrix}8-x\ge0\\x^2-5x-2=\left(8-x\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x^2-5x-2=x^2-16x+64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\11x=66\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=6\left(nhận\right)\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)
\(\Leftrightarrow\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Leftrightarrow x=5\)