K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

ĐK: x khác 1 và - 1

\(\frac{x+1}{2\left(x-1\right)}-\frac{x-1}{2\left(x+1\right)}=\frac{2}{\left(x-1\right)\left(x+1\right)}\)

<=> \(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\frac{4}{2\left(x-1\right)\left(x+1\right)}\)

<=> \(\left(x+1\right)^2-\left(x-1\right)^2=4\)

<=> \(\left(x+1-x+1\right)\left(x+1+x-1\right)=4\)

<=> 2.2x = 4 

<=> x = 1 loại 

Vậy phương trình vô nghiệm 

e trả lời sau đc ko ạ ? ):

\(\frac{x+1}{2x-2}-\frac{x-1}{2x+2}=\frac{2}{x^2-1}\) ĐKXĐ : \(x\ne\pm1\)

\(\frac{x+1}{2\left(x-1\right)}-\frac{x-1}{2\left(x+1\right)}=\frac{2}{\left(x-1\right)\left(x+1\right)}\)

\(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{2\left(x+1\right)\left(x-1\right)}=\frac{4}{2\left(x+1\right)\left(x-1\right)}\)

Khử mẫu ta đc : \(\left(x+1\right)^2-\left(x-1\right)^2=4\)

\(4x=4\Leftrightarrow x=1\)Theo ĐKXĐ : ktm 

Vậy pt vô nghiệm.

28 tháng 1 2016

Đặt \(x^{2\:}-2x+2=t\)

Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)

Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)

<=> \(11t^2-t=6\)

r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@

28 tháng 1 2016

thiếu xíu: đặt x^2-2x+2=t

24 tháng 7 2020

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\left(x\ne-4;-5;-6;-7;-8\right)\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{x}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)

vậy x=2; x=-13

24 tháng 7 2020

Bài làm:

đkxđ: \(x\ne\left\{-4;-5;-6;-7\right\}\)

Ta có: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)

Vậy tập nghiệm của PT \(S=\left\{-13;2\right\}\)

18 tháng 3 2020

\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\left(x\ne1\right)\)

\(\Leftrightarrow\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{x^2+x+1}=0\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4x-4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Rightarrow3x=0\)

=> x=0 (tmđk)
Vậy x=0

19 tháng 4 2018

a,TH1:\(\hept{\begin{cases}x+1\ge0\\x+7\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-1\\x\ge-7\end{cases}}\)\(\Rightarrow x\ge-1\)

TH2:\(\hept{\begin{cases}x+1\le0\\x+7\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le-1\\x\le-7\end{cases}}\)\(\Rightarrow x\le-7\)

Tập nghiệm của BPT là ...

b,TH1:\(\hept{\begin{cases}2x-1< 0\\3x+2>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x< 1\\3x>-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-\frac{2}{3}\end{cases}}\)\(\Rightarrow-\frac{2}{3}< x< \frac{1}{2}\)

TH2:\(\hept{\begin{cases}2x-1>0\\3x+2< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x>1\\3x< -2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -\frac{2}{3}\end{cases}}\)(loại)

Tập nghiệm của BPT....

19 tháng 4 2018

thêm bài a,

Vì \(x\ne-7\) nên \(x< -7\)

Tập nghiệm.....

18 tháng 3 2020

\(\Leftrightarrow\frac{6x^2+3}{24}-\frac{10x-4}{24}=\frac{6x^2-6}{24}-\frac{4x-12}{24}\)

\(\Leftrightarrow\frac{6x^2+3-10x+4}{24}=\frac{6x^2-6-4x+12}{24}\)

\(\Leftrightarrow6x^2-10x+7=6x^2-4x+6\)

\(\Leftrightarrow-6x+1=0\)

\(\Rightarrow-6x=-1\)

\(\Leftrightarrow x=\frac{1}{6}\)

Vậy ...

2 tháng 3 2019

\(\frac{2x-1}{x}+\frac{3-x}{4}=2\)

\(ĐKXĐ:x\ne0\)

\(MTC:4x\)

\(\frac{4\left(2x-1\right)}{4x}+\frac{x\left(3-x\right)}{4x}=\frac{8x}{4x}\)

\(\Rightarrow4\left(2x-1\right)+x\left(x-3\right)=8x\)

\(\Leftrightarrow8x-4+x^2-3x=8x\)

\(\Leftrightarrow8x-4+x^2-3x-8x=0\)

\(\Leftrightarrow x^2-3x-4=0\)

\(\Leftrightarrow x^2-4x+x-4=0\)

\(\Leftrightarrow\left(x^2-4x\right)+\left(x-4\right)=0\)

\(\Leftrightarrow x\left(x-4\right)+\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)

Hoặc\(\hept{\begin{cases}x-4=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(N\right)\\x=-1\left(N\right)\end{cases}}}\)

Vậy tập nghiệp của pt là \(S=\left\{-1;4\right\}\)

16 tháng 2 2019

a) \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)ĐKXĐ : \(x\ne1;-3\)

\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}=\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{2x^2+6x+4}{\left(x-1\right)\left(x+3\right)}=\frac{2x^2-7x+5}{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow2x^2+6x+4=2x^2-7x+5\)

\(\Leftrightarrow2x^2+5x+4-2x^2+7x-5=0\)

\(\Leftrightarrow12x-1=0\)

\(\Leftrightarrow x=\frac{1}{12}\)( thỏa mãn ĐKXĐ )

b) c) tương tự