Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4 + 6x3 + 11x2 + 6x + 1 = 0 <=> ( x2 + 3x + 1 ) 2 = 0 <=> x2 + 3x + 1 = 0
|
1. \(x^4+6x^3+11x^2+6x+1=0\)
\(\Leftrightarrow x^4+6x^3+9x^2+2x^2+6x+1=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)^2=0\)
\(\Leftrightarrow x^2+3x+1=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)
2. \(x^4+x^3-4x^2+x+1=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)+2.\frac{x}{2}\left(x^2+1\right)+\left(\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)
\(\Leftrightarrow\left(x^2+1+\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\x^2+3x+1=0\end{cases}}\)
+) ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
+) x2 + 3x + 1 = 0
<=> ( x + 3/2 )2 - 5/4 = 0
<=> ( x + 3/2 )2 = 5/4
<=> \(\hept{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)
Vậy pt có tập nghiệm \(S=\left\{1;\frac{-3+\sqrt{5}}{2};-\frac{3+\sqrt{5}}{2}\right\}\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
1) \(2x^4+5x^2+2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+1=0\\x^2+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-\frac{1}{2}\\x^2=-2\end{cases}}\) (vô lý)
=> pt vô nghiệm
2) \(2x^4-7x^2-4=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\2x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=-\frac{1}{2}\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
3) \(x^4-5x^2+4=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm2\end{cases}}\)
4) \(2x^4-20x^2+18=0\)
\(\Leftrightarrow x^4-10x^2+9=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=9\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
1. \(2x^4+5x^2+2=0\)
Vì \(2x^4+5x^2+2\ge2\)
=> Pt trên vô nghiệm
2. \(2x^4-7x^2-4=0\)
\(\Leftrightarrow2x^4+x^2-8x^2-4=0\)
\(\Leftrightarrow x^2\left(2x^2+1\right)-4\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x^2+1=0\left(vo-ly\right)\\x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
\(\left(x^2-x+1\right)+\left(x^2-2x+3\right)+...+\left(x^2-100x+199\right)=300\)
\(\Leftrightarrow100x^2-100x+\frac{\left[\left(199-1\right):2+1\right]\left(199+1\right)}{2}=300\)
\(\Leftrightarrow100x^2-100x+10000=300\)
\(\Leftrightarrow100x^2-100x+9700=0\)
\(\Leftrightarrow100\left(x^2-x+97\right)=0\)
\(\Leftrightarrow x^2-x+97=0\)
\(\Leftrightarrow x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+97=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{387}{4}=0\left(1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{387}{4}\ge\frac{387}{4}>0;\forall x\)
\(\Rightarrow\)pt\(\left(1\right)\)vô nghiệm
Vậy pt trên vô nghiệm