K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

3x2 + 2x - 1 = 0

<=> 3x2 + 3x - x - 1 = 0

<=> 3x(x + 1) - (x + 1) = 0

<=> (3x - 1)(x + 1) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)  Vậy S = {-1; 1/3}

Trả lời:

3x^2 +2x -1 =0

<=> 3x^2 +3x -x -1 =0

<=> ( 3x^2 +3x ) -( x +1 )=0

<=> 3x (x +1 ) - ( x +1 ) =0

<=>( 3x -1 ) ( x +1 ) =0

Đến đây bạn tự làm tiếp nhé

#Học tốt:))

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

12 tháng 5 2022

`3x+7=0`

`<=>3x=-7`

`<=>x=-7/3`

Vậy `S={-7/3}`

______________________

`2x(x-2)+2x(5-3x)=0`

`<=>2x(x-2+5-3x)=0`

`<=>2x(3-2x)=0`

`@TH1:2x=0<=>x=0`

`@TH2: 3-2x=0<=>2x=3<=>x=3/2`

Vậy `S={0;3/2}`

12 tháng 5 2022

3x+7=0

\(\Leftrightarrow3x=-7\Leftrightarrow x=-\dfrac{7}{3}\)

2x(x-2)+2x(5-3x)=0

\(\Leftrightarrow2x\left(x-2+5-3x\right)=0\)

\(\Leftrightarrow2x\left(-2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{-2}=\dfrac{3}{2}\end{matrix}\right.\)

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

10 tháng 2 2020

phương trình đâu vậy

10 tháng 2 2020

sr nhờ cậu giải l.ại vậy nãy nhầm đề

24 tháng 3 2017

a/ 4x + 20 = 0

⇔4x = -20

⇔x = -5

Vậy phương trình có tập nghiệm S = {-5}

b/ 2x – 3 = 3(x – 1) + x + 2

⇔ 2x-3 = 3x -3+x+2

⇔2x – 3x = -3+2+3

⇔-2x = 2

⇔x = -1

Vậy phương trình có tập nghiệm S = {-1}
 

24 tháng 3 2017

câu tiếp theo

a/ (3x – 2)(4x + 5) = 0

3x – 2 = 0 hoặc 4x + 5 = 0

  • 3x – 2 = 0 => x = 3/2
  • 4x + 5 = 0 => x = – 5/4

Vậy phương trình có tập nghiệm S= {-5/4,3/2}

b/ 2x(x – 3) – 5(x – 3) = 0

=> (x – 3)(2x -5) = 0

=> x – 3 = 0 hoặc 2x – 5 = 0

* x – 3 = 0 => x = 3

* 2x – 5 = 0 => x = 5/2

Vậy phương trình có tập nghiệm S = {0, 5/2}


 

16 tháng 2 2016

(x2 + 1)2 + 3x(x2 + 1) + 2x2 = 0

Đặt x2 + 1 = a (a > 0), ta đc:

a2 + 3ax + 2x2 = 0

=> 2x2 + 3ax + a2 = 0

Có: \(\Delta=9a^2-4.2.a^2=a^2\Rightarrow\sqrt{\Delta}=a\)

\(\Rightarrow x=\frac{-3a+a}{4}=\frac{-2a}{4}=-\frac{a}{2}\)      (1)

hoặc \(x=\frac{-3a-a}{4}=\frac{-4a}{4}=-a\)       (2)

+ Từ (1) => x = \(\frac{-x^2-1}{2}\) \(\Rightarrow2x=-x^2-1\Rightarrow-x^2-2x-1=0\Rightarrow-\left(x+1\right)^2=0\Rightarrow x=-1\)

+ Từ (2) => x = - x2 - 1 => -x2 - x - 1 = 0 => -(x2 + x + 1) = 0 => x2 + x + 1 = 0 , mà x2 + x + 1 > 0 => pt vô nghiệm

Vậy x = -1

20 tháng 4 2017

19 tháng 4 2019

Sửa đề: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên \(x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

3 tháng 10 2017

a) Trường hợp 1. Xét 4 - 5x = 5 - 6x.

Tìm được x = 1.