Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
(2x + 1)(3x + 3) = 0
<=> 2x + 1 = 0 hoặc 3x + 3 = 0
<=> x = -1/2 hoặc x = -1
\(\left(2x+1\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\3x=-3\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)
Vậy ...
Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!
Tick cho mình nhé!
\(\left(2x+1\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\3x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)
Vậy ...
\(\left(2x+1\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\3x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-1\end{cases}}}}\).
Vậy \(S=\left\{-\frac{1}{2};-1\right\}\).
3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> 3x(x + 1) - (x + 1) = 0
<=> (3x - 1)(x + 1) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\) Vậy S = {-1; 1/3}
Trả lời:
3x^2 +2x -1 =0
<=> 3x^2 +3x -x -1 =0
<=> ( 3x^2 +3x ) -( x +1 )=0
<=> 3x (x +1 ) - ( x +1 ) =0
<=>( 3x -1 ) ( x +1 ) =0
Đến đây bạn tự làm tiếp nhé
#Học tốt:))