Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
1 – 2y = 0 ⇔ -2y = - 1 ⇔ y = . Vậy phương trình có tập nghiệm S = {}.
Đề đúng là \(...+9x\left(x^2+1\right)\) chứ em?
Pt này vẫn giải được thôi, nhưng kết quả thì vô cùng xấu
Thay số 9 bằng số 3 hoặc -3 gì đó sẽ tốt hơn
Phương trình A là phương trình bậc hai một ẩn vì a<>0
\(\sqrt{2}t^2-2t+4=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot\sqrt{2}\cdot4=4-16\sqrt{2}< 0\)
Do đó; Phương trình vô nghiệm
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
- 3x – 2 = 0 => x = 3/2
- 4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
\(\Leftrightarrow3x^3-3x+x-1\ge0\\ \Leftrightarrow3x\left(x-1\right)\left(x+1\right)+\left(x-1\right)\ge0\\ \Leftrightarrow\left(x-1\right)\left(3x^2+3x+1\right)\ge0\\ \Leftrightarrow x-1\ge0\left(3x^2+3x+1=3\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}>0\right)\\ \Leftrightarrow x\ge1\)
(x – 3)(2x + 1) = 0 ⇔ x – 3 = 0 hoặc 2x + 1 = 0
⇔ x = 3 hoặc 2x = -1 ⇔ x = 3 hoặc x = -1/2
Vậy phương trình có hai nghiệm x = -1/2 và x = 3.
\(\left(2x+1\right)\left(x^2+2\right)=0\)
\(< =>\orbr{\begin{cases}2x+1=0\\x^2+2=0\end{cases}}\)
Do \(x^2\ge0=>x^2+2\ge2=>x^2+2>0\)
Xét phương trình \(2x+1=0< =>x=-\frac{1}{2}\)
Để phương trình này =0<=>25*25^x-26*25^x=-1
<=>25^x(25-26)=-1
<=>25^x*(-1)=-1
<=>25^x=0(vô lí)
=>x thuộc rỗng.
du gi cung cam on . nhưng bạn ghi đề sai rồi