Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DK: \(x\ge1;y\ge0\)
Ta có: \(x^2-2y^2=xy+x+y\)
<=> \(x^2-\left(y+1\right)x-2y^2-y=0\)(1)
xem (1) là phương trình ẩn x tham số y
\(\Delta=\left(y+1\right)^2-4\left(-2y^2-y\right)=9y^2+6y+1=\left(3y+1\right)^2\)
pt (1) có 2 nghiệm : \(\orbr{\begin{cases}x=\frac{y+1+3y+1}{2}=2y+1\\x=\frac{y+1-\left(3y+1\right)}{2}=-y\end{cases}}\)
+) Với x = 2y +1; thế vào pt (2) ta có:
\(\left(2y+1\right)\sqrt{2y}-y\sqrt{2y}=3y+3\)
<=> \(\left(y+1\right)\sqrt{2y}=3\left(y+1\right)\)
<=> \(\orbr{\begin{cases}y+1=0\\\sqrt{2y}=3\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-1\left(loại\right)\\y=\frac{9}{2}\end{cases}}}\)
Với y = 9/2 => x = 10 thỏa mãn
+) Với x = - y
Ta có: \(x\ge1\Rightarrow-y\ge1\Rightarrow y\le-1\)vô lí vì \(y\ge0\).
Vậy x = 10; y = 9/2.
a, Khi \(x = 0 ⇔ 0! + y! = y! ⇔ \) Vô lý.
\(\rightarrow x \ne y\)\(\ne 0\)
Khi \(x = y \rightarrow 2 . x! = (2x)! \rightarrow 2x! = x(x+1)(x+2)...(2x)=>x(x+1)(x+2)...(2x) = 2 \rightarrow x = y = 1. \)
Nếu \(x \ne y \rightarrow\) Vì vai trò của \(x,y\) là bình đẳng nên giả sử \(x < y\)
\(\rightarrow x!+y!<2.y!≤(y+1).y!=(y+1)!<(x+y)!\)
Vì \(x \ne y \ne 1 => (x+y) \ne (y+1) \rightarrow (x+y)! \ne (y+1).\)
Vậy \((x,y) = {(1,1)}.\)
b, Chứng minh bằng phương pháp phản chứng:
Giả sử \(x^{17} + y^{17} = 19^{17} \) có nghiệm nguyên.
Không mất tổng quát, giả sử \(x < y\)
\(\rightarrow x^{17} < y^{17} ≤ 19^{17}\)
\(\rightarrow (y+1)^{17} ≤ 19^{17} \)
\(\rightarrow y^{17} + 17y^{16} = 19^{17}\)
Mà \(\rightarrow x > 17 \rightarrow x = y =18.\)
Thử lại không đúng, suy ra giả sử sai.
\(\rightarrow\) Không tồn tại số nguyên thỏa mãn.