Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Rightarrow\left(x^2+4x+8\right)^2+2.\dfrac{3}{2}x\left(x^2+4x+8\right)+\dfrac{9}{4}x^2-\dfrac{1}{4}x^2=0\)
\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2=0\)
\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x-\dfrac{1}{2}x\right)\left(x^2+4x+8+\dfrac{3}{2}x+\dfrac{1}{2}x\right)=0\)
\(\Rightarrow\left(x^2+4x+8+x\right)\left(x^2+4x+8+2x\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+6x+8\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)=0\)
Vì x2 ≥ 0 với mọi x
⇒ x2 + 5x + 8 ≥ 0 với mọi x
\(\Rightarrow\left(x+2\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
b) \(\dfrac{x-5}{2017}+\dfrac{x-2}{2020}=\dfrac{x-6}{2016}+\dfrac{x-68}{1954}\)
Trừ 2 vào mỗi vế ta có:
\(\Rightarrow\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)
\(\Rightarrow\dfrac{x-2022}{2017}+\dfrac{x-2022}{2020}-\dfrac{x-2022}{2016}-\dfrac{x-2022}{1954}=0\)
\(\Rightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)
Ta thấy \(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\)
\(\Rightarrow x-2022=0\Rightarrow x=2022\)
Chúc bạn học tốt!
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
Bài 1:
F=(x-1)3-x2(x-3)
=x3-3x2+3x-1-x3-3x2
=(x3-x3)-(3x2-3x2)+3x-1
=3x-1
Bài 2:
a)(x+3)2=(x-2)(x+4)
<=>x2+6x+9=x2+2x-8
<=>4x=-17
<=>x=-17/4
b)(x+4)2=2x2+16
<=>x2+8x+16=2x2+16
<=>8x=x2
<=>8x-x2=0
<=>x(8-x)=0
<=>x=0 hoặc x=8
Bài 1:
F=(x-1)3-x2(x-3)=x3-3x2+3x-1-x3+3x2=3x-1
Bài 2:
a, <=>(x+3)2-(x-2)(x-4)=0
<=>x^2+6x+9-x^2-4x+2x+8=0
<=>4x+17=0
<=>x=-4,25
b,<=>(x+4)2-2x2-16=0
<=>x2+8x+16-2x2-16=0
<=>8x-x2=0
<=>x(8-x)=0
<=>\(\orbr{\begin{cases}x=0\\x=8\end{cases}}\)
Bài 3:(đợi một xíu)
Ta có \(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}.x=\frac{2018}{2019}.x\)
<=>\(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}x-\frac{2018}{2019}x=0\)
<=>x\(\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)
Vì \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\) không thể bằng 0
Vậy x=0
Ta có 1 nghiệm thỏa mãn S=\(\left\{0\right\}\)
Lời giải:
Từ điều kiện đề bài suy ra:
\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)
\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)
\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)
Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)
\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó
Thử lại vào đk ban đầu thấy thỏa mãn
Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)
Vì \(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)
\(\Rightarrow x=y=1\)
\(\Rightarrow A=1^{2019}+1^{2019}\)
\(\Rightarrow A=2\)
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
B. \(\frac{x+4}{2015}+1+\frac{x+3}{2016}+1=\frac{x+2}{2017}+1+\frac{x+1}{2018}+1\)
<=> \(\frac{x+2019}{2015}+\frac{x+2019}{2016}=\frac{x+2019}{2017}+\frac{x+2019}{2018}\)
<=>(x+2019).(\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}>0\)
Vì (\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}>0\)
=> x+2019>0
=>x>-2019
b) \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)
\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)
\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)
\(\Leftrightarrow\)\(x-2022=0\) (vì 1/2017 + 1/2020 - 1/2016 - 1/1954 \(\ne0\))
\(\Leftrightarrow\)\(x=2022\)
Vậy...
b) \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)
\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)
\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)
\(\Leftrightarrow\)\(x-2022=0\) (vì 1/2017 + 1/2020 - 1/2016 - 1/1954 \(\ne0\))
\(\Leftrightarrow\)\(x=2022\)
Vậy,....
Lời giải:
a.
PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$
Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$
Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.
b.
$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.
Vậy pt vô nghiệm.
c.
$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm
d.
$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$
Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm.