Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3+3x^2+2x=y^2-y\)
\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)
\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)
Đến đây chắc khó.
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
a)3x-2≥x+6
<=>3x-x≥6+2
<=>2x≥8
<=>x≥4
tập nghiệm của phương trình là
\(S=\left\{xIx\ge4\right\}\)
biểu diễn tập nghiệm trên trục số
b)(3x-6)-(-2x-1)≥0
<=>3x-6++1≥0
<=>3x+2x≥6-1
<=>5x≥5
<=>x≥1
tập nghiệm của phương trình là
\(S=\left\{xIx\ge1\right\}\)
Với x=-1 => y^3=-4 (loại)
Với x=0 => y^3=-2 (loại)
Với x=1 => y^3=4 (loại)
+ ) Với \(\hept{\begin{cases}x\le-2\\x\ge2\end{cases}\Rightarrow}\left(x+2\right)\left(2x-1\right)\ge0.\Leftrightarrow2x^2+3x-2\ge0\)
\(\Leftrightarrow x^3+2x^2+3x-2\ge x^3\)(1)
Ta có : \(-x^2< 3\Leftrightarrow-x^2-2< 1\Leftrightarrow2x^2-2< 3x^2+1\)\(\Leftrightarrow x^3+3x+2x^2-2< x^3+3x+3x^2+1\)
\(\Leftrightarrow x^3+2x^2+3x-2< \left(x+1\right)^3\)(2)
Từ (1) và (2) suy ra \(x^3\le x^3+2x^x+3x-2=y^3< \left(x+1\right)^3\)
\(\Rightarrow y^3=x^3+2x^2+3x-2=x^3\Leftrightarrow2x^3+3x-2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\Rightarrow x=-2\)
Thay x=-2 vào phương trình ban đầu ta tìm được y^3=-8 -=> y=-2
Vậy....(-2;-2)
Ta
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)
\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)
\(\Leftrightarrow x\ge2\)
Với \(x\ge2\)thì ta suy ra được
\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)
Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:
\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)
\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3
Ta có \(x^6< x^6+3x^2+1< x^6+6x^4+12x^2+8=\left(x^2+2\right)^3\).
Theo nguyên lí kẹp ta có \(x^6+3x^2+1=\left(x^2+1\right)^3\Leftrightarrow x^4=0\Leftrightarrow x=0\).
Khi đó y = 1.
Vậy...
Làm cái này thử đi:
Cho \(x,y\ge0\)giải phương trình.
\(9^x-8^x=19y\)
Giải được thì nói tiếp :3