Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104
với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4
\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2
b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0
\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0
\Rightarrow ∫m<8m>−2∫m>−2m<8
\Rightarrow -2<m<8
\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}
c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2
hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5
\Leftrightarrow m+2 = 1 ; 5
m+2 = 1 \Rightarrow m = -1
m+2 = 5 \Rightarrow m =3
Dễ thấy đc nghiệm (0;1;0) và (0;-1;0) rồi nhưng kb còn nghiệm khác hay k
\(x^4+y+4=y^2-x^2\Rightarrow4x^4+4y+16=4y^2-4x^2\Rightarrow4x^4+4x^2+1+16=4y^2-4y+1\\ \)
\(\Rightarrow\left(2x^2+1\right)^2+16=\left(2y-1\right)^2\Rightarrow\left(2y-1\right)^2-\left(2x^2+1\right)^2=16\Rightarrow\left(2y-2x^2-2\right)\left(2y+2x^2\right)=16\)\(\Rightarrow\left(y-x^2-1\right)\left(y+x^2\right)=4\)
Do \(\left(y-x^2-1\right)+\left(y+x^2\right)=2y-1\)không chia hết cho 2 => y-x2-1 và y+x2 không cùng tính chẵn lẻ
TH1: y-x2-1 =1 và y+x2=4 => y=3 và x = 1 hoặc -1
Th2: y-x2-1 =-1 và y+x2=-4 => y= -2 và x2 < 0 => loại
Vậy x=1 hoặc -1 và y=3
Phương trình được viết lại:
\(4x^2+4x+1=4y^4+4y^3+y^2+3y^2+4y+1\)
\(\Leftrightarrow4x^2+4x+1=\left(2y^2+y\right)^2+3y^2+4y+1\)
\(\Leftrightarrow\left(2x+1\right)^2=\left(2y^2+y+1\right)^2+2y-y^2\)
Nếu: \(y=-1\)và \(2y-y^2< 0\Rightarrow3y^2+4y+1>0\)
\(\Rightarrow\left(2y^2+y\right)^2< \left(2x+1\right)^2< \left(2y^2+y+1\right)^2\)
Ta thấy vô lí vì \(\left(2y^2+y\right)^2;\left(2y^2+y+1\right)\)là 2 số chính phương liên tiếp.
Vì thế nên \(y\)nhận 1 trong những giá trị: \(-1;0;1;2\)
- \(y=-1\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=1\Rightarrow\)Không tồn tại \(x\)
- \(y=2\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)
Vậy các nghiệm nguyên của phương trình là: \(\left(x,y\right)\in\left\{\left(0;-1\right),\left(-1;-1\right);\left(0;0\right);\left(-1;0\right);\left(5;2\right);\left(-6;2\right)\right\}\)
a) Thay m vào phương trình, ta có:
\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)
Thay giá trị đã có của x vào phương trình
\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)
\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)
Thay giá trị của y vào phương trình:
\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)
\(\Rightarrow x=13-5\sqrt{2}\)
\(pt\Leftrightarrow y\left(y-1\right)=x^4+x^2+10\)
Vì \(x^2\left(x^2+1\right)< x^4+x^2+10< \left(x^4+x^2+10\right)+\left(6x^2+2\right)=\left(x^2+3\right)\left(x^2+4\right)\)
Nên \(x^2\left(x^2+1\right)< y\left(y-1\right)< \left(x^2+3\right)\left(x^2+4\right)\)
\(\Rightarrow y\left(y-1\right)=\left(x^2+1\right)\left(x^2+2\right)\) hoặc \(y\left(y-1\right)=\left(x^2+2\right)\left(x^2+3\right)\). Thay vào pt đầu giải ra ta dc
\(x^2=4\) hoặc \(x^2=1\) suy ra \(x=\pm1\) hoặc \(x=\pm2\)