Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
Với x, y, z nguyê:
Có: \(x^2+y^2-xy=x+y+2\)
=> \(2x^2+2y^2-2xy-2x-2y=4\)
=> \(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=6=1^2+1^2+2^2\)
=> x khác y
G/s : x >y
=> x -1 > y - 1
Có các TH saU;
\(\hept{\begin{cases}x-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\Rightarrow\left(x-y\right)^2=4\)( thỏa mãn )
\(\hept{\begin{cases}x-1=-1\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=1\)( thỏa mãn)
\(\hept{\begin{cases}x-1=1\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=9\)( loại )
\(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}\Rightarrow\left(x-y\right)^2=1\)(thỏa mãn)
\(\hept{\begin{cases}x-1=2\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=0\end{cases}}\Rightarrow\left(x-y\right)^2=9\)( loại )
\(\hept{\begin{cases}x-1=2\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=16\)( loại )
Vậy nghiệm ( x; y) là ( 2;0), (0; -1) , (3; 2 ), và các hoán vị.
a)
\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)
\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)
Nếu x>3 thì \(2^x⋮\:8\Rightarrow2^x+7\)chia 8 dư 7 , không là số chính phương.
Vậy x\(\le\)3 \(\Rightarrow x\in\){0;1;2}
x=0 \(\Rightarrow7=y^2\).Phương trình không có nghiệm nguyên.
x=1 \(\Rightarrow9=y^2\Leftrightarrow y=\pm3\)
x=2 \(\Rightarrow11=y^2\).Phương trình không có nghiệm nguyên.
Phương trình có 2 nghiệm nguyên (1;3),(1;-3)