Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(x=1\Rightarrow y=1\)
- Với \(x>1\Rightarrow y>1\)
\(\Rightarrow3^x=2^y+1\)
Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)
Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm)
\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)
\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)
\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)
\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)
a) \(2xy^2+x+y+1=x^2+2y^2+xy\)
\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)
\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)
\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)
\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)
Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)
Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)
Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).
Khỏi thanks!
\(------------------\)
Ta có:
\(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
Cộng hai pt \(\left(1\right);\left(2\right)\) vế theo vế, ta thu được:
\(4\left(x+1\right)=4^z+2^{y-2}\)
\(\Leftrightarrow\) \(x+1=4^{z-1}+2^{y-2}\)
\(\Leftrightarrow\) \(\left(x-1\right)+2=4^{z-1}+2^{y-2}\) \(\left(i\right)\)
Lại có: do \(x,y,z\in Z^+\) nên từ \(\left(1\right)\) suy ra \(2^y\ge4\) hay \(y\ge2\)
Khi đó, ta phải tìm các các nghiệm \(x,y,z\) sao cho \(x,y,z\in Z^+\) và \(y\ge2\)
\(------------------\)
Mặt khác, từ phương trình \(\left(2\right)\) với lưu ý rằng \(z\in Z^+\) suy ra \(3x+1⋮4,\)
hay nói cách khác, \(\left[4x-\left(x-1\right)\right]⋮4\) tức là \(x-1⋮4\) \(\left(3\right)\)
Do đó, từ \(\left(i\right)\) với chú ý \(\left(3\right)\) đã chứng minh ở trên suy ra \(VP\left(i\right)\) và \(2\) đồng dư theo mô đun \(4\)
\(------------------\)
Ta xét các trường hợp sau:
\(\Omega_1:\) Với \(z=1\) thì \(4^{z-1}=1\) chia cho \(4\) dư \(1\) nên \(2^{y-2}\) chia cho \(4\) dư \(1\) \(\Rightarrow\) \(y=2\)
vì nếu \(y=3\) thì \(2^{y-2}=2\) chia cho \(4\) dư \(2\) và \(y>3\) thì \(2^{y-2}⋮4\)
Khi đó, từ \(\left(1\right);\left(2\right)\) suy ra \(x=1\)
\(\Omega_1:\) Với \(z>1\) thì \(4^{z-1}⋮4\) nên ta có \(2^{y-2}\) chia cho \(4\) phải dư \(2\) suy ra \(y=3\)
Theo đó, dễ dàng suy ra được \(x=5\) dẫn đến \(z=2\)
\(------------------\)
Vậy, các bộ nghiệm nguyên dương thỏa mãn là \(\left(x,y,z\right)\in\left\{\left(1,2,1\right);\left(5,3,2\right)\right\}\)
1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:
Từ đây ta xét với \(x>6\)thì
\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)
\(\Rightarrow\)Phương trình vô nghiệm.
Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.
2/ \(3^x+1=\left(y+1\right)^2\)
\(\Leftrightarrow3^x=y\left(y+2\right)\)
Với \(y=1\)
\(\Rightarrow x=1\)
Với \(y>1\)
Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)
Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)
Vậy \(x=1,y=1\)
a) Đầu tiên ta thấy nếu \(y<0\) thì \(3^y\) không phải là số nguyên. Suy ra \(x^2-3026=-3^y\) cũng không phải số nguyên, vô lí vì \(x\) là số nguyên. Suy ra \(y\ge0\).
Nếu \(y=0\to x^2=3026\to\) loại vì \(3026\) không phải là số chính phương.
Nếu \(y\ge1\to3026-x^2\vdots3\to2-x^2\vdots3\to x^2-2\vdots3\) mâu thuẫn vì một số chính phương chia cho 3 không có dư là 2.
Vậy phương trình vô nghiệm nguyên.
b, Đầu tiên ta thấy nếu \(y<0\to2^y\) không phải là số nguyên. Do đó \(1+x+x^2+x^3\) cũng không là số nguyên, mâu thuẫn vì theo giả thiết \(x,y\in Z.\)
Xét \(y\ge0.\) Với \(y=0\to1+x+x^2+x^3=1\to x\left(1+x+x^2\right)=0\to x=0.\) Vậy ta có nghiệm \(\left(0,0\right).\)
Với \(y=1\to1+x+x^2+x^3=2\to x\left(1+x+x^2\right)=2\to2\vdots x\to x=\pm1,\pm2.\) Vì \(x+x^2=x\left(x+1\right)\) là số chẵn nên \(1+x+x^2\) là số lẻ, suy ra \(x=\pm2.\) Thử lại không thoả mãn.
Với \(y=2\to1+x+x^2+x^3=4\to x^3+x^2+x-3=0\to\left(x-1\right)\left(x^2+2x+3\right)=0\to x=1.\)
Vậy ta có một nghiệm nguyên nữa là \(\left(1,2\right).\)
Với \(y\ge3\to1+x+x^2+x^3=2^y\to\left(1+x\right)\left(1+x^2\right)=2^y\to1+x^2=2^a\) với \(a\) là số tự nhiên. Khi \(a=0\to x=0\to y=1\to\) loại. Xét \(a>0\to x\) lẻ \(\to1+x^2\) chia cho \(4\) dư \(2\). (Vì một số chính phương lẻ chia 4 dư 1). Vậy \(2^a\) chia cho \(4\) dư \(2\). Suy ra \(a=1\to x^2+1=2\to x=1\to2^y=4\to y=2\to\) loại vì \(y\ge3.\)
Tóm lại phương trình chỉ có 2 nghiệm nguyên như trên là \(\left(x,y\right)=\left(0,0\right),\left(1,2\right).\)
2.
Nhân hai vế của phương trình với 6xy:
6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử x⩾y⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
{−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số: (43;7),(7;43)