Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
\(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)
Đến đây bạn tự giải tiếp và tìm nghiệm nha!
Câu c)
\(7x^2=2013-12y^2\Rightarrow7x^2< 2013\Leftrightarrow x\le16\)
Đến đây ta nhận xét rằng vế trái lẻ và chia hết cho 3. Vậy bạn chỉ cần thử 3 giá trị của x là 3, 9, 15
Hiện tại mình đang bận nên chưa tiện giải hết.
Khi nào mình giải tiếp nha!
a, \(2^x+3=y^2\)
Vì y nguyên nên \(x\ge0\)
+ \(x=0\)=>\(y=\pm2\)
+ \(x=1\)=> \(y^2=5\)loại
+ \(x\ge2\)=> \(2^x⋮4\)
=> \(2^x+3\)chia 4 dư 3
Mà số chính phương chia 4 luôn dư 0 hoặc 1
=> không có giá trị nào của x,y thỏa mãn
Vậy \(\left(x,y\right)=\left(0;\pm2\right)\)
d, \(6x^2+5y^2=74\)
=> \(6x^2\le74\)=> \(x^2\le\frac{37}{3}\)
=> \(x^2\in\left\{0;1;4;9\right\}\)
Thay vào PT ta được
\(\left(x,y\right)=\left(\pm3;\pm2\right)\)
Vậy nghiệm của PT là \(\left(x,y\right)=\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\)
1. \(x\left(y-4\right)=35-5\left(y-4\right)\) với y= 4 không phải nghiệm y khác 4
\(x=\frac{35}{y-4}-1\)
y=4+35/n
x=n-1
\(\hept{\begin{cases}n=\left\{-7,-5,-1,1,5,7\right\}\\y=\left\{-1,-3,-31,39,11,9\right\}\\x=n-1=\left\{-8,-6,-2,0,4,6\right\}\end{cases}}\)
2.x^2+x+6=y^2
4x^2+4x+1=4y^2-23
(2x+1)^2=4y^2-23
=>4y^2-23=t^2
(2y)^2-t^2=23
=>\(\hept{\begin{cases}y=+-6\\t=+-11\end{cases}\Rightarrow\hept{\begin{cases}2x+1=11\\2x+1=-11\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=-6\end{cases}}}\)
\(2x^2-4x=2x\left(x-2\right)\)
\(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
\(10\left(x-y\right)-6x\left(y-x\right)=10\left(x-y\right)+6x\left(x-y\right)=\left(10+6x\right)\left(x-y\right)=2\left(x-y\right)\left(3x+5\right)\)\(\left(x+1\right)^2-25=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
\(x^2+3x-y^2+3y=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)=\left(x+y\right)\left(x-y+3\right)\)
\(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\)
\(x^2-7x-y^2+7y=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\)
\(3y^2-3z^2+3x^2=3\left(y^2-z^2+x^2\right)\)
1) Ta thấy 345, 5y^2 chia ht 5 suy ra 3x^2 chia ht 5 suy ra x chia ht 5 ( 5 và 3 ng tố cùng nhau). Đặt x=\(5x_1\)
Vậy 3x^2=75\(x_1^2\)Thay vào PT rồi chia 2 vế cho 5 đc
15\(x_1^2\)+y^2=69 Ta thấy y^2 phải chia ht cho 3 Đặt y=\(3y_1\Rightarrow y^2=9y_1^2\) vào PT rồi chia 2 vế cho 3 đc
\(5x_1^2+3y_1^2=23\) suy ra 2 hạng tử của VT ko đồng thời bằng 0 Suy ra \(o\le5x_1^2\le23\) mà \(x_1\in Z\Rightarrow0\le5x_1^2\le20\) bạn làm tiếp nhé, chỉ cần thay 5x1^2 từ 0,1,2,3,4 Là tìm đc x rồi y
2) 6x^2 chia ht 2, 74 chia ht 2 suy ra 5y^2 chia ht 2 .Mà 5 và 2 là số ng tố cùng nhau suy ra 5 chia ht y Đặt \(y=2a\Rightarrow5y^2=20a^2\) Thay vào PT rồi chia 2 vế cho 2 đc
3x^2+10a^2=37 Suy ra x,a ko đồng thời =0
\(\Rightarrow3x^2+10a^2=37\ge3\) Mà y nguyên suy ra a nguyên Thay 10a^2=(10,20,30) sẽ tìm a rồi tìm y, rồi tìm x .Bạn tự lm típ