Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow\left(1-cos6x\right)cos2x+1-cos2x=0\)
\(\Leftrightarrow cos2x-cos2x.cos6x+1-cos2x=0\)
\(\Leftrightarrow\frac{1}{2}\left(cos8x-cos4x\right)-1=0\)
\(\Leftrightarrow2cos^24x-cos4x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-1\\cos4x=\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow4x=\pi+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
3.
Đặt \(\frac{x}{6}=t\Rightarrow\frac{1}{4}+cos^22t=\frac{1}{2}sin^23t\)
\(\Leftrightarrow1+4cos^22t=1-cos6t\)
\(\Leftrightarrow cos6t+4cos^22t=0\)
\(\Leftrightarrow4cos^32t+4cos^22t-3cos2t=0\)
\(\Leftrightarrow cos2t\left(4cos^22t+4cos2t-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2t=0\\cos2t=\frac{1}{2}\\cos2t=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{\pi}{4}+\frac{k\pi}{2}\\t=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}=\frac{\pi}{4}+\frac{k\pi}{2}\\\frac{x}{3}=\frac{\pi}{6}+k\pi\\\frac{x}{3}=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
\(\cos2x-\sin x+\cos x=0\Leftrightarrow\cos^2x-\sin^2x+\left(\cos x-\sin x\right)=0\)
\(\Leftrightarrow\left(\cos x-\sin x\right)\left(\cos x+\sin x+1\right)=0\)
\(\Leftrightarrow\begin{cases}\cos x-\sin x=0\\\cos x+\sin x+1=0\end{cases}\) \(\Leftrightarrow\begin{cases}\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)=0\\\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)=-1\end{cases}\)
\(\Leftrightarrow\begin{cases}x+\frac{\pi}{4}=\frac{\pi}{2}+k\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x-\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\pi+k2\pi\\x=-\frac{\pi}{2}+k2\pi\end{cases}\)
cây a) bạn xét 2 TH :
- cosx=0<=> x= pi/2+k.pi. k là nghiệm pt
- cosx khác 0. chia 2 vế cho cosx^2 ta được pt bậc hai với hàm tan rồi giải ra như bình thường
b) bạn sd công thức hạ bậc là xong r
a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.
Đặt t = tanx thì phương trình này trở thành
2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.
Vậy
b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành
3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x
⇔ sin2x - 4sinxcosx + 3cos2x = 0
⇔ tan2x - 4tanx + 3 = 0
⇔
⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.
c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương
sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔
⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.
d) 2cos2x - 3√3sin2x - 4sin2x = -4
⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0
⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0
⇔
\(sin^23x.cos2x+sin^2x=0\)
\(\left(3sinx-4sin^3x\right)^2.cos2x+sin^2x=0\)
\(sin^2x\left[\left(3-4sin^2x\right)^2.cos2x+1\right]=0\)
\(sin^2x\left[\left(1+2cos2x\right)^2.cos2x+1\right]=0\)
\(sin^2x\left(4cos^22x+1\right)\left(cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\text{π}\\2x=k2\text{π}\end{matrix}\right.\)\(\Leftrightarrow x=k\text{π}\)
Ha Hoang , bn ơi từ dòng 4 chuyển sang dòng 5 làm kiểu gì vậy ạ???