Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
C =\(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
=\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)
=1-x
C=\(\left(1-\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\).\(\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
=\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)
=\(1-x\)
(\(\sqrt{1+x}+\sqrt{1-x}\))\(\left(2+2\sqrt{1-x^2}\right)=8\)(1)(đk: \(-1\le x\le1\))
đặt \(\sqrt{1+x}+\sqrt{1-x}\) =a (\(a\ge0\)
=> \(a^2=2+2\sqrt{1-x^2}\)
khi đó
(1)\(\Leftrightarrow a^3=8\Leftrightarrow a=\sqrt{8}=2\) (tm)
=>\(\sqrt{1+x}+\sqrt{1-x}\) =2
\(\Leftrightarrow2+2\sqrt{1-x^2}=4\)
\(\Leftrightarrow2\sqrt{1-x^2}=2\)
\(\Leftrightarrow\sqrt{1-x^2}=1\Leftrightarrow1-x^2=1\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)(tm)
vậy x=0 là nghiệm của phương trình
1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\left(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
Dễ thấy \(\sqrt{x}+2\ge2>0\forall x\ge0\)
Nên để \(P< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
Vậy với \(0\le x< 1\)thì P<0
1) ĐKXĐ: \(x>0;x\ne4;x\ne9\)
(*lười lắm, ko chép lại đề nha :V*)
\(P=\frac{\left(2+\sqrt{x}\right)^2+\sqrt{x}\left(2-\sqrt{x}\right)+4x+2\sqrt{x}-4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{2\sqrt{x}-\left(\sqrt{x}+3\right)}{\sqrt{x}\left(2-\sqrt{x}\right)}\\ =\frac{4+4\sqrt{x}+x+2\sqrt{x}-x+4x+2\sqrt{x}-4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\\ =\frac{4x+8\sqrt{x}}{2+\sqrt{x}}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\frac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{4x}{\sqrt{x}-3}\)
2) Để P>0 thì
\(\frac{4x}{\sqrt{x}-3}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x>0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x< 0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\\sqrt{x}>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\\sqrt{x}< 3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>9\\x< 0\left(ktm\right)\end{matrix}\right.\)
Vậy với \(x>9\) thì \(P>0\).
Chúc bạn học tốt nha.
Bạn giải thêm cho mk câu này đi
c) tìm giá trị của x để P = -1
\(\left\{{}\begin{matrix}4x^2-4xy+4y^2=4\\x^2+xy+2y^2=4\end{matrix}\right.\)
\(\Rightarrow3x^2-5xy+2y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu:
- Với \(y=x\Rightarrow x^2-x^2+x^2=1\Rightarrow x^2=1\Rightarrow x=...\)
- Với \(y=\frac{3}{2}x\Rightarrow x^2-\frac{3}{2}x^2+\left(\frac{3}{2}x\right)^2=1\Leftrightarrow x^2=\frac{4}{7}\Rightarrow x=...\)
A=\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right)\):\(\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)Đk x>0 x#0 x#1
=\(\frac{x-1}{\sqrt{x}\left(\sqrt{x-1}\right)}\):\(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}}.\sqrt{x}-1\)
=\(\frac{x-1}{\sqrt{x}}\)
Ta có 3+\(2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)(thay và A ta dc
=>\(\frac{3+2\sqrt{2}-1}{\sqrt{2}+1}\)
= \(\frac{2\sqrt{2}+2}{\sqrt{2}+1}\)
=2
mk nhầm....\(\frac{x-1}{\sqrt{x}}>0\)=> \(x-1>0\Rightarrow x>1\)
mk làm r nhé
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
ĐKXĐ: ...
\(\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+\frac{x^2}{x+1}-12=0\)
Đặt \(\frac{x^2}{x+1}=t\)
\(\Rightarrow t^2+t-12=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x+1}=3\\\frac{x^2}{x+1}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-3=0\\x^2+4x+4=0\end{matrix}\right.\) \(\Rightarrow\) bấm casio