\(\left(x-\frac{x}{x+1}\right)^2+\frac{x^2-12x-12}{x+1}=0\) <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+\frac{x^2}{x+1}-12=0\)

Đặt \(\frac{x^2}{x+1}=t\)

\(\Rightarrow t^2+t-12=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x+1}=3\\\frac{x^2}{x+1}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-3=0\\x^2+4x+4=0\end{matrix}\right.\) \(\Rightarrow\) bấm casio

17 tháng 2 2020

thiếu j k bạn

18 tháng 2 2020

Ta có :

\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}+2\right)\)

\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)\)

\(=\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

16 tháng 8 2019

C =\(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

=\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)

=1-x

16 tháng 8 2019

C=\(\left(1-\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\).\(\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

=\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)

=\(1-x\)

17 tháng 2 2020

(\(\sqrt{1+x}+\sqrt{1-x}\))\(\left(2+2\sqrt{1-x^2}\right)=8\)(1)(đk: \(-1\le x\le1\))
đặt \(\sqrt{1+x}+\sqrt{1-x}\) =a (\(a\ge0\)

=> \(a^2=2+2\sqrt{1-x^2}\)

khi đó

(1)\(\Leftrightarrow a^3=8\Leftrightarrow a=\sqrt{8}=2\) (tm)

=>\(\sqrt{1+x}+\sqrt{1-x}\) =2

\(\Leftrightarrow2+2\sqrt{1-x^2}=4\)

\(\Leftrightarrow2\sqrt{1-x^2}=2\)

\(\Leftrightarrow\sqrt{1-x^2}=1\Leftrightarrow1-x^2=1\)

\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)(tm)

vậy x=0 là nghiệm của phương trình

26 tháng 7 2019

1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\left(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)

Dễ thấy \(\sqrt{x}+2\ge2>0\forall x\ge0\)

Nên để \(P< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

Vậy với \(0\le x< 1\)thì P<0

26 tháng 7 2019

Hỏi đáp Toán

(Câu trả lời bằng hình ảnh)

27 tháng 7 2019

1) ĐKXĐ: \(x>0;x\ne4;x\ne9\)

(*lười lắm, ko chép lại đề nha :V*)

\(P=\frac{\left(2+\sqrt{x}\right)^2+\sqrt{x}\left(2-\sqrt{x}\right)+4x+2\sqrt{x}-4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{2\sqrt{x}-\left(\sqrt{x}+3\right)}{\sqrt{x}\left(2-\sqrt{x}\right)}\\ =\frac{4+4\sqrt{x}+x+2\sqrt{x}-x+4x+2\sqrt{x}-4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\\ =\frac{4x+8\sqrt{x}}{2+\sqrt{x}}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\frac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{4x}{\sqrt{x}-3}\)

2) Để P>0 thì

\(\frac{4x}{\sqrt{x}-3}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x>0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x< 0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\\sqrt{x}>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\\sqrt{x}< 3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>9\\x< 0\left(ktm\right)\end{matrix}\right.\)

Vậy với \(x>9\) thì \(P>0\).

Chúc bạn học tốt nhaok.

27 tháng 7 2019

Bạn giải thêm cho mk câu này đi

c) tìm giá trị của x để P = -1

NV
18 tháng 2 2020

\(\left\{{}\begin{matrix}4x^2-4xy+4y^2=4\\x^2+xy+2y^2=4\end{matrix}\right.\)

\(\Rightarrow3x^2-5xy+2y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=\frac{3}{2}x\end{matrix}\right.\)

Thay vào pt đầu:

- Với \(y=x\Rightarrow x^2-x^2+x^2=1\Rightarrow x^2=1\Rightarrow x=...\)

- Với \(y=\frac{3}{2}x\Rightarrow x^2-\frac{3}{2}x^2+\left(\frac{3}{2}x\right)^2=1\Leftrightarrow x^2=\frac{4}{7}\Rightarrow x=...\)

16 tháng 8 2019

A=\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right)\):\(\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)Đk x>0 x#0 x#1

=\(\frac{x-1}{\sqrt{x}\left(\sqrt{x-1}\right)}\):\(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

=\(\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)\left(\sqrt{x}+1\right)}\)

=\(\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)

=\(\frac{\sqrt{x}+1}{\sqrt{x}}.\sqrt{x}-1\)

=\(\frac{x-1}{\sqrt{x}}\)

Ta có 3+\(2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)(thay và A ta dc

=>\(\frac{3+2\sqrt{2}-1}{\sqrt{2}+1}\)

= \(\frac{2\sqrt{2}+2}{\sqrt{2}+1}\)

=2

16 tháng 8 2019

mk nhầm....\(\frac{x-1}{\sqrt{x}}>0\)=> \(x-1>0\Rightarrow x>1\)

mk làm r nhé

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)