Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\left(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
Dễ thấy \(\sqrt{x}+2\ge2>0\forall x\ge0\)
Nên để \(P< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
Vậy với \(0\le x< 1\)thì P<0
Ta có :
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
A=\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right)\):\(\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)Đk x>0 x#0 x#1
=\(\frac{x-1}{\sqrt{x}\left(\sqrt{x-1}\right)}\):\(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}}.\sqrt{x}-1\)
=\(\frac{x-1}{\sqrt{x}}\)
Ta có 3+\(2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)(thay và A ta dc
=>\(\frac{3+2\sqrt{2}-1}{\sqrt{2}+1}\)
= \(\frac{2\sqrt{2}+2}{\sqrt{2}+1}\)
=2
mk nhầm....\(\frac{x-1}{\sqrt{x}}>0\)=> \(x-1>0\Rightarrow x>1\)
mk làm r nhé
1) ĐKXĐ \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\\ =\left(\frac{\sqrt{x}-5\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\frac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\\ =\frac{-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\frac{-4\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\\ =\sqrt{x}+1\)
2)
\(P=\sqrt{x}+1=\sqrt{\frac{3-\sqrt{5}}{2}}+1\\ \sqrt{\frac{6-2\sqrt{5}}{4}}+1\\ =\sqrt{\frac{5-2\cdot\sqrt{5}\cdot1+1}{4}}+1\\ =\sqrt{\frac{\left(\sqrt{5}-1\right)^2}{4}}+1\\ =\frac{\sqrt{5}-1}{2}+1\\ \frac{\sqrt{5}-1+2}{2}\\ =\frac{\sqrt{5}+1}{2}\)
\(A=\left(\frac{1+\sqrt{3}}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\frac{1-\sqrt{3}}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\right).\sqrt{3}\)
\(=\left(\frac{1+\sqrt{3}-1+\sqrt{3}}{-2}\right).\sqrt{3}=-3\)
\(B=\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để \(A=\frac{B}{6}\Leftrightarrow B=6A\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}}=-18\)
\(\Rightarrow\sqrt{x}-1=-18\sqrt{x}\Rightarrow\sqrt{x}=\frac{1}{19}\Rightarrow x=\frac{1}{361}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{-x+x\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x-\sqrt{x}-x+x\sqrt{x}+6-x-\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x\sqrt{x}-x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{\left(x-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\sqrt{x}-2\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
\(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\frac{\left(x+27\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\frac{x+27}{\sqrt{x}+3}\)
\(Q=\frac{x+27}{\sqrt{x}+3}\ge6\\ \Leftrightarrow\frac{x+27}{\sqrt{x}+3}-6\ge0\\ \Leftrightarrow\frac{x+27-6\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\ge0\\ \Leftrightarrow\frac{x-6\sqrt{x}+45}{\sqrt{x}+3}\ge0\)
Dễ thấy \(x-6\sqrt{x}+45=\left(\sqrt{x}-3\right)^2+36\ge36>0\forall x\ge0\)
\(\sqrt{x}+3\ge3>0\forall x\ge0\)
=> Ko có giá trị nào của x thỏa mãn yêu cầu
P/s: Nếu đề là \(x\sqrt{x}+27\)thì sẽ khác một chút :v
Bạn ơi chỗ kia phải là \(\frac{x-6\sqrt{x}+9}{\sqrt{x}+3}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\)\(\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{x-4-x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-3}{4}\)
\(b,\)Để \(P>0\Rightarrow\frac{\sqrt{x}-3}{4}>0\)
Mà \(4>0\Rightarrow\sqrt{x}-3>0\Rightarrow\sqrt{x}>3\Rightarrow x>9\)
\(c,\sqrt{P}_{min}=0\Rightarrow\frac{\sqrt{x}-3}{4}=0\)
\(\Leftrightarrow\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
1) ĐKXĐ: \(x>0;x\ne4;x\ne9\)
(*lười lắm, ko chép lại đề nha :V*)
\(P=\frac{\left(2+\sqrt{x}\right)^2+\sqrt{x}\left(2-\sqrt{x}\right)+4x+2\sqrt{x}-4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{2\sqrt{x}-\left(\sqrt{x}+3\right)}{\sqrt{x}\left(2-\sqrt{x}\right)}\\ =\frac{4+4\sqrt{x}+x+2\sqrt{x}-x+4x+2\sqrt{x}-4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\\ =\frac{4x+8\sqrt{x}}{2+\sqrt{x}}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\frac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{4x}{\sqrt{x}-3}\)
2) Để P>0 thì
\(\frac{4x}{\sqrt{x}-3}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x>0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x< 0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\\sqrt{x}>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\\sqrt{x}< 3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>9\\x< 0\left(ktm\right)\end{matrix}\right.\)
Vậy với \(x>9\) thì \(P>0\).
Chúc bạn học tốt nha.
Bạn giải thêm cho mk câu này đi
c) tìm giá trị của x để P = -1