\(\left(x-2\right)\left(2x+\frac{1}{x-1}\right)=0\)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

\(ĐKXĐ:x\ne1\)

Phương trình đã có 1 nghiệm bằng 2. Ta cần giải phương trình:

\(2x+\frac{1}{x-1}=0\)

\(\Leftrightarrow\frac{2x\left(x-1\right)+1}{x-1}=0\)

\(\Leftrightarrow2x^2-2x+1=0\)

Ta có \(\Delta=2^2-4.2.1=-4< 0\)(vô nghiệm)

Vậy nghiệm duy nhất là 2

1 tháng 3 2020

Giải :

\(\left(x-2\right)\left(2x+\frac{1}{x-1}\right)=0\)

\(\Leftrightarrow x-2=0\text{ hoặc }2x+\frac{1}{x-1}=0\)

* Trường hợp 1 :

\(x-2=0\Leftrightarrow x=2\)

* Trường hợp 2 :

\(2x+\frac{1}{x-1}=0\) \(\left(\text{ĐKXĐ : }x-1\ne0\Leftrightarrow x\ne1\right)\)

\(\Leftrightarrow\frac{2x\left(x-1\right)}{x-1}+\frac{1}{x-1}=0\)

\(\text{Khử mẫu : }2x\left(x-1\right)+1=0\)

\(\Leftrightarrow2x^2-2x+1=0\)

\(\Leftrightarrow x^2-x+\frac{1}{2}=0\)

\(\Leftrightarrow x^2-x+\frac{1}{4}+\frac{1}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{-1}{4}\)

\(\Leftrightarrow x\in\varnothing(\text{vì }\left(x-\frac{1}{2}\right)^2\ge0)\)

Vậy \(S=\left\{2\right\}\).

25 tháng 2 2020

ĐKXĐ : \(x\ne2,x\ne4\)

Pt \(\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\) (2)

Đặt  \(\frac{x+1}{x-2}=a,\frac{x-2}{x-4}=b\Rightarrow ab=\frac{x+1}{x-4}\)

Khi đó pt (2) trở thành :

\(a^2+ab-12b=0\)

\(\Leftrightarrow a^2-3ab+4ab-12b=0\)

\(\Leftrightarrow a\left(a-3b\right)+4b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3b\\a=-4b\end{cases}}\)

Bạn thay vào tính, được nghiệm là \(S=\left\{3,\frac{4}{3}\right\}\)

20 tháng 3 2020

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)

\(\Leftrightarrow\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x}{2\left(x+1\right)\left(x-3\right)}+\frac{x^2-3x}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{2x^2-6x}{2\left(x+1\right)\left(x-3\right)}=\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2x}{2\left(x+1\right)}=0\)

=> 2x=0

=> x=0(tmđk)
Vậy x=0 là nghiệm của phương trình

20 tháng 3 2020

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\)

=> 2x=0

<=> x=0

Vậy x=0

20 tháng 3 2020

+ Ta có: \(\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}=\frac{2x}{\left(x+1\right).\left(x-3\right)}\)\(\left(ĐKXĐ: x\ne-1, x\ne3\right)\)

      \(\Leftrightarrow\frac{x.\left(x+1\right)+x.\left(x-3\right)}{2.\left(x-3\right).\left(x+1\right)}=\frac{4x}{2.\left(x-3\right).\left(x+1\right)}\)

       \(\Rightarrow x^2+x+x^2-3x=4x\)

      \(\Leftrightarrow\left(x^2+x^2\right)+\left(x-3x-4x\right)=0\)

      \(\Leftrightarrow2x^2-6x=0\)

      \(\Leftrightarrow2x.\left(x-6\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=6\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,6\right\}\)

+ Ta có: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)\(\left(ĐKXĐ:x\ne1,x^2+x+1\ne0\right)\)

       \(\Leftrightarrow\frac{\left(x^2+x+1\right)+2.\left(x-1\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right).\left(x^2+x+1\right)}\)

        \(\Rightarrow x^2+x+1+2x-2=3x^2\)

      \(\Leftrightarrow\left(x^2-3x^2\right)+\left(x+2x\right)+\left(1-2\right)=0\)

      \(\Leftrightarrow-2x^2+3x-1=0\)

      \(\Leftrightarrow2x^2-3x+1=0\)

      \(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

      \(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)=0\)

      \(\Leftrightarrow\left(2x-1\right).\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=1\left(L\right)\end{cases}}\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

24 tháng 6 2019

   \(\frac{13}{\left(2x+7\right)\left(x-3\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\left(1\right)\)

\(ĐKXĐ:x\ne\frac{-7}{2};x\ne\pm3\)

\(MTC:\left(2x+7\right)\left(x-3\right)\left(x+3\right)=\left(2x+7\right)\left(x^2-9\right)\)

\(\left(1\right)\Leftrightarrow\frac{13\left(x+3\right)}{\left(2x+7\right)\left(x^2-9\right)}+\frac{\left(x^2-9\right)}{\left(2x+7\right)\left(x^2-9\right)}=\frac{6\left(2x+7\right)}{\left(2x+7\right)\left(x^2-9\right)}\)

\(\Rightarrow13\left(x+3\right)+\left(x^2-9\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2-9=12x+42\)

\(\Leftrightarrow13x+x^2+30=12x+42\)

\(\Leftrightarrow x^2+13x-12x+30-42=0\)

\(\Leftrightarrow x^2+x-12\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(4x-12\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

Hoặc \(x-3=0\Leftrightarrow x=3\left(L\right)\)

Hoặc \(x+4=0\Leftrightarrow x=-4\left(N\right)\)

Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)

24 tháng 6 2019

Giải :

\(\text{ĐKXĐ :}\:x\ne-\frac{7}{2}\:\text{và}\:x\ne\pm3 \). Mẫu chung là \(\left(2x+7\right)\left(x+3\right)\left(x-3\right)\).

Khử mẫu ta được :

\(13\left(x+3\right)+\left(x+3\right)\left(x-3\right)=6\left(2x+7\right)\Leftrightarrow x^2+x-12=0\)

                                                                                               \(\Leftrightarrow x^2+4x-3x-12=0\)

                                                                                               \(\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)

                                                                                               \(\Leftrightarrow(x+4)(x-3)=0\)

                                                                                               \(\Leftrightarrow x=-4\:\text{hoặc}\:x=3\)

Trong 2 giá trị tìm được, chỉ có \(x=-4\) là thoả mãn ĐKXĐ. Vậy phương trình có 1 nghiệm duy nhất \(x=-4\).

2 tháng 7 2019

Giải :

\(\left(x+2\right)\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\2x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}}\)

Vậy \(S=\left\{-2;\frac{1}{2}\right\}\).

2 tháng 7 2019

Ta có (x+2) (2x-1)=0 

Có 2 trường hợp

(X+2)=0 => x= -2

Hoặc

(2x-1)=0 => x= 1/2

Vậy x=-2 hoặc x=1/2

3 tháng 2 2021

1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)

\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

3 tháng 2 2021

2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)

Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

Vậy x = -2 hoặc x = -4

10 tháng 3 2019

Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni

11 tháng 3 2019

( x - 2 ).( x + 3 )2  -  ( x - 2 ).(x - 1)2  = 0

(=) ( x - 2 ).[ ( x + 3 )2 - ( x - 1 )2 ] = 0

(=)  ( x - 2).[ x2 + 6x + 9 - x2 + 2x - 1] = 0

(=) ( x - 2 ) .( 8x + 8 ) = 0

(=)  \(\orbr{\begin{cases}x-2=0\\8x+8=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy phương trình có nghiệm là : x = 2 , -1

b) 9x- 6x + 1 = 4x2

(=) 9x2 - 6x + 1 - 4x2 = 0

(=)  5x2 - 6x + 1 = 0

(=)  5x2 - 5x - x + 1 = 0

(=) 5x.( x - 1 ) - (x - 1) = 0

(=) ( x - 1 ).( 5x - 1) = 0

(=)\(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

Vậy phương trình có nghiệm là : x = 1 , \(\frac{1}{5}\)

c) ( x - 3 ) - \(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= 1

(=) \(\frac{3\left(x-3\right)}{3}\)\(-\)\(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)\(\frac{3}{3}\)

(=) 3.( x - 3) - ( x - 3 ).( 2x +1 ) = 3

(=) 3x - 9 - 2x2 +5x +3 -3 = 0

(=) -2x2 +8x -9 = 0 (loại )

Vậy phương trình vô nghiệm

d)  x2 + 6x - 7 =0

(=) x+7x - x - 7 = 0

(=) x.( x + 7 ) - ( x + 7 ) = 0 

(=)  ( x - 1 ) .( x+7 ) = 0

(=)  \(\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=-7\end{cases}}\)

Vậy phương trình có nghiệm là : x = 1 , -7

11 tháng 3 2020

\(\left(2x+2\right)\cdot\left(x^2+1\right)=0\)

\(\Leftrightarrow2x+2=0\left(\text{vì }x^2+1\ne0\right)\)

\(\Leftrightarrow2x=-2\text{ }\Leftrightarrow x=-1\)

\(\text{Vậy S}=\left\{-1\right\}\)

11 tháng 3 2020

mong các bạn k đúng cho mình

28 tháng 6 2019

Giải :

\(\left(x+1\right)\left(2x^2-4x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot2x\left(x-2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2x=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=0\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-1;0;2\right\}\).

28 tháng 6 2019

\(\left(x+1\right)\left(2x^2-4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x\left(2x-4\right)=0\end{cases}}\Leftrightarrow x\in\left\{0;1;2\right\}\)