\(\hept{\begin{cases}x^2+9y^2\\x+3y+8=12xy\end{cases}=10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

Hệ \(\Leftrightarrow\hept{\begin{cases}\left(x+3y\right)^2-6xy=10\\\left(x+3y\right)-12xy=-8\end{cases}}\)

Đặt \(\hept{\begin{cases}x+3y=a\\6xy=b\end{cases}}\)

ta đc hệ mới \(\hept{\begin{cases}a^2-b=10\\a-2b=-8\end{cases}}\)

Rút a theo b từ pt 2 rồi thế vào pt 1 tìm đc a,b, -> dễ

13 tháng 2 2019

Anh Dương em có cách khác.

Hệ phương trình tương đương \(\hept{\begin{cases}x^2+9y^2=10\\x+8=3y\left(4x-1\right)\end{cases}}\)

+)Xét x = 1/4.Thay vào phương trình hai suy ra \(\frac{33}{4}=0\) (loại)

+)Xét x khác 1/4.Chia hai vế của phương trình cho 4x - 1. Suy ra \(3y=\frac{x+8}{4x-1}\) 

Thay vào phương trình một suy ra \(x^2+\frac{\left(x+8\right)^2}{\left(4x-1\right)^2}=10\) (1)

Dễ dàng nhận ra x = 3 là một nghiệm tức y = 1/3

Xét x khác 3:Chia hai vế của (1) cho x - 3 ta được:

\(\frac{x^2}{x-3}+\frac{\left(x+8\right)^2}{\left(4x-1\right)^2\left(x-3\right)}=\frac{10}{x-3}\)

Giải tiếp :v.Tất nhiên cách của anh Dương sẽ hay hơn,đỡ tốn thời gian hơn,cách này đọc chơi cho vui thôi ạ.

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

Hệ \(\Leftrightarrow\hept{\begin{cases}3x^2+2x.\left(\frac{4x-6}{3}\right)-x+\frac{4x-6}{3}=0\left(1\right)\\y=\frac{4x-6}{9}\end{cases}}\)

Nhân 3 vào pt (1) rồi giải là ra nhé :)))

Học tốt!!!!!!!

27 tháng 7 2019

\(a,hpt\Leftrightarrow\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}27x-14y=-588\\15x+24y=150\end{cases}\Leftrightarrow}\hept{\begin{cases}9x-\frac{14}{3}y=-196\\5x+8y=50\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}45x-\frac{70}{3}y=-980\\45x+72y=450\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{286}{3}y=1430\\45x+72y=450\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}y=15\\x=-14\end{cases}}\)

4 tháng 3 2020

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

4 tháng 3 2020

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)