Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
\(\text{ĐKXĐ : }x\notin\left\{0;-1;-2;-3\right\}\). Ta biến đổi phương trình như sau :
\(\frac{5}{x}+\frac{2}{x+3}=\frac{4}{x+1}+\frac{3}{x+2}\)
\(\Leftrightarrow\left(\frac{5}{x}+1\right)+\left(\frac{2}{x+3}+1\right)=\left(\frac{4}{x+1}+1\right)+\left(\frac{3}{x+2}+1\right)\)
\(\Leftrightarrow\frac{5+x}{x}+\frac{5+x}{x+3}=\frac{5+x}{x+1}+\frac{5+x}{x+2}\)
\(\Leftrightarrow(5+x)\left(\frac{1}{x}+\frac{1}{x+3}-\frac{1}{x+1}-\frac{1}{x+2}\right)=0\)
\(\Leftrightarrow5+x=0\text{ (1) hoặc }\frac{1}{x}+\frac{1}{x+3}-\frac{1}{x+1}-\frac{1}{x+2}=0\text{ (2) }\).
Ta có :
\(\left(1\right)\Leftrightarrow x=-5\);
\(\left(2\right)\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+1}+\frac{1}{x+2}\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x^2+3x}-\frac{1}{x^2+3x+2}\right)=0\)
\(\Leftrightarrow2x+3=0\text{ hoặc }\frac{1}{x^2+3x}-\frac{1}{x^2+3x+2}=0\).
- \(2x+3=0\Leftrightarrow x=-\frac{3}{2}\);
- \(\frac{1}{x^2-3x}-\frac{1}{x^2+3x+2}=0\). Dễ thấy phương trình này vô nghiệm.
Tóm lại, phương trình đã cho có tập nghiệm \(S=\left\{-5;-\frac{3}{2}\right\}\).
ĐKXĐ: \(x\ne\left\{0;-1;-2;-3;-4;-5;-6;-7\right\}\)
\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x+7}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+1}+\frac{1}{x+6}+\frac{1}{x+3}+\frac{1}{x+4}\)
\(\Rightarrow\frac{x+7+x}{x\left(x+7\right)}+\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+6+x+1}{\left(x+1\right)\left(x+6\right)}+\frac{x+4+x+3}{\left(x+3\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x+7}{x^2+7x}+\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+6}+\frac{2x+7}{x^2+7x+12}\)
\(\Rightarrow\left(2x+7\right)\left(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\right)=0\)
mà \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\ne0\)
=> 2x + 7 = 0 => x = -7/2
Vậy x = -7/2
(x+1)/99+(x+2)/98+(x+3)/97=(x+4)/96+(x+5)/95+(x+6)/94
[(x+1)/99 +1]+[(x+2)/98 +1]+[(x+3)/97 +1]-3=[(x+4)/96 +1]+[(x+5)/95 +1]+[(x+6)/94 +1]-3
[(x+1+99)/99+(x+2+98)/98+(x+3+97)/97]-3=[(x+4+96)/96+(x+5+95)/95+(x+6+94)/94]-3
(x+100)/99+(x+100)/98+(x+100)/97=(x+100)/96+(x+100)/95+(x+100)/94
(x+100)(1/99+1/98+1/97)=(x+100)(1/96+1/95+1/94)
(x+100)(1/99+1/98+1/97)-(x+100)(1/96+1/95+1/94)=0
(x+100)(1/99+1/98+1/97-1/96-1/95-1/94)=0
Ma : 1/99+1/98+1/97-1/96-1/95-1/94 \(\ne\)0
=>x+100=0
=>x=-100
k mk nha khong hieu noi mk nha.
1/3x-1/2=(3/5-4x)15/7
1/3x-1/2=9/7-60/7x
1/3x+60/7x=1/2+9/7
187/21x=25/14
x=75/374
k mk nha ban.
ĐKXĐ: bạn tự tính nhé
PT tương đương: \(\frac{5}{x-1}-\frac{5}{x-3}=\frac{2}{x+1}-\frac{2}{x-4}\)
<=>\(\frac{5x-15}{\left(x-1\right)\left(x-3\right)}-\frac{5x-5}{\left(x-1\right)\left(x-3\right)}=\frac{2x-8}{\left(x+1\right)\left(x-4\right)}-\frac{2x+2}{\left(x+1\right)\left(x-4\right)}\)
<=>\(\frac{-10}{\left(x-1\right)\left(x-3\right)}=\frac{-10}{\left(x+1\right)\left(x-4\right)}\)
<=>\(\frac{1}{\left(x-1\right)\left(x-3\right)}=\frac{1}{\left(x+1\right)\left(x-4\right)}\)
<=>\(\frac{\left(x+1\right)\left(x-4\right)}{\left(x-1\right)\left(x-3\right)\left(x+1\right)\left(x-4\right)}=\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)\left(x+1\right)\left(x-4\right)}\)
=>\(\left(x+1\right)\left(x-4\right)=\left(x-1\right)\left(x-3\right)\)
Còn lại bạn từ làm nhé:)