Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-1}{3x^2+7x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{2x-1}{\left(3x+1\right)\left(x+2\right)}+\frac{3}{\left(3x+1\right)\left(3x+4\right)}-\frac{2x+7}{\left(4x+3\right)\left(x-3\right)}=\frac{5}{\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{3x+1}+\frac{1}{3x+1}-\frac{1}{3x+4}+\frac{1}{3x+4}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{x-3-x-2}{\left(x+2\right)\left(x-3\right)}=\frac{5\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow5x-3=-5\)
\(\Leftrightarrow x=-\frac{2}{5}\)
Chúc bạn học tốt !!!
\(ĐKXĐ:\) \(\forall x\in Z\)
\(\frac{x^2}{x^2+2x+2}+\frac{x^2}{x^2-2x+2}-\frac{4\left(x^2-5\right)}{x^4+4}=\frac{322}{65}\)
\(\Leftrightarrow\)\(\frac{x^2\left(x^2-2x+2\right)}{\left(x^2+2x+2\right)\left(x^2-2x+2\right)}+\frac{x^2\left(x^2+2x+2\right)}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}-\frac{4\left(x^2-5\right)}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=\frac{322}{65}\)
\(\Leftrightarrow\)\(\frac{x^4-2x^3+2x^2+x^4+2x^3+2x^2-4x^2+20}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=\frac{322}{65}\)
\(\Leftrightarrow\)\(\frac{2x^4+10}{x^4+4}=\frac{322}{65}\)
\(\Rightarrow\)\(65\left(2x^4+10\right)=322\left(x^4+4\right)\)
\(\Leftrightarrow\)\(130x^4+650=322x^4+1288\)
\(\Leftrightarrow\)\(192x^4=-638\) (vô lý)
Vậy pt vô nghiệm
P/S:mk lm bừa thôi, đúng thì you tham khảo, sai thì báo mk biết nha
ĐK \(x\ne\left\{1;2;3;4\right\}\)
Ta có \(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)
\(\Leftrightarrow\frac{\left(x-1\right)^2+1}{x-1}+\frac{\left(x-4\right)^2+4}{x-4}=\frac{\left(x-2\right)^2+2}{x-2}+\frac{\left(x-3\right)^2+3}{x-3}\)
\(\Leftrightarrow x-1+\frac{1}{x-1}+x-4+\frac{4}{x-4}=x-2+\frac{2}{x-2}+x-3+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{4}{x-4}=\frac{2}{x-2}+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{5x-8}{x^2-5x+4}=\frac{5x-12}{x^2-5x+6}\)\(\Leftrightarrow\left(5x-8\right)\left(x^2-5x+6\right)=\left(5x-12\right)\left(x^2-5x+4\right)\)
\(\Leftrightarrow5x^3-25x^2+30x-8x^2+40x-48=5x^3-25x^2+20x-12x^2+60x-48\)
\(\Leftrightarrow4x^2-10x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}\left(tm\right)}\)
Vậy x=0 hoặc x=5/2
\(\frac{2x}{x-2}-\frac{5}{x+2}=\frac{x^2+12}{x^2-4}\)
\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x^2+12}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow2x\left(x+2\right)-5\left(x-2\right)=x^2+12\)
\(\Leftrightarrow2x^2+4x-5x+10=x^2+12\)
\(\Leftrightarrow2x^2+4x-5x+10-x^2-12=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow x^2+x-2x-2=0\)
\(\Leftrightarrow\left(x^2+x\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x-2=0\Leftrightarrow x=2\\x+1=0\Leftrightarrow x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là S={2;-1}
ĐKXĐ: \(x\ne\pm2\)
\(\frac{2x}{x-2}-\frac{5}{x+2}=\frac{x^2+12}{x^2-4}\)
<=> \(\frac{2x}{x-2}-\frac{5}{x+2}=\frac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)
<=> 2x(x + 2) - 5(x - 2) = x2 + 12
<=> 2x2 + 4x - 5x + 10 = x2 + 12
<=> 2x2 - x + 10 = x2 + 12
<=> 2x2 - x + 10 - x2 - 12 = 0
<=> x2 - x - 2 = 0
<=> (x - 2)(x + 1) = 0
<=> x - 2 = 0 hoặc x + 1 = 0
<=> x = 2 (ktm) hoặc x = -1 (tm)
=> x = -1