\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{5\sqrt{x}}{\sqrt{x}+3}=\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Lời giải:

ĐK: \(x\geq 0; x\neq 9\)

PT tương đương:

\(\frac{(\sqrt{x}+2)(\sqrt{x}+3)-5\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{22}{x-9}\)

\(\Leftrightarrow \frac{-4x+20\sqrt{x}+6}{x-9}=\frac{22}{x-9}\)

\(\Rightarrow -4x+20\sqrt{x}+6=22\)

\(\Leftrightarrow -x+5\sqrt{x}-4=0\)

\(\Leftrightarrow x-5\sqrt{x}+4=0\)

\(\Leftrightarrow (\sqrt{x}-1)(\sqrt{x}-4)=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x}=1\rightarrow x=1\\ \sqrt{x}=4\rightarrow x=16\end{matrix}\right.\) (đều thỏa mãn)

7 tháng 3 2021

a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)

ĐKXĐ : \(x\inℝ\)

\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)

\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)

\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)

\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)

\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)

\(\Leftrightarrow2x-2=-2\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy phương trình có nghiệm duy nhất x = 0

Sửa đề: \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{5\sqrt{x}}{\sqrt{x}+3}=\dfrac{22}{x-9}\)

\(\Leftrightarrow x+5\sqrt{x}+6-5x+15\sqrt{x}=22\)

\(\Leftrightarrow-4x+20\sqrt{x}-16=0\)

\(\Leftrightarrow x-5\sqrt{x}+4=0\)

=>x=1 hoặc x=16

28 tháng 10 2017

\(< =>\sqrt[3]{x+5}=-2\)
<=> \(\left(\sqrt[3]{x+5}\right)^3=-8\)
<=> \(x+5=-8\)
<=> x=-13

9 tháng 8 2017

2. ĐK: \(x\ge0\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\ge0\\b=\sqrt{x^2+4}\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2a^2\\x^2+4=b^2\\3\sqrt{x^3+4x}=3ab\end{matrix}\right.\)

pt trên được viết lại thành

\(2a^2+b^2-3ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=\dfrac{1}{2}b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x}=\dfrac{1}{2}\sqrt{x^2+4}\end{matrix}\right.\)

Đến đây dễ rồi nhé ^^

b: \(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

=>x-3=0 hoặc x+3=9

=>x=3 hoặc x=6

c: \(\Leftrightarrow\sqrt{x^3-6x^2+9}=2x-6=\sqrt{4x^2-24x+36}\)

\(\Leftrightarrow x^3-6x^2+9-4x^2+24x-36=0\)

=>\(x^3-10x^2+24x-27=0\)

hay \(x\in\left\{7.18\right\}\)

1 tháng 8 2018

3) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{4x-20}=4\)

\(\Leftrightarrow4x-20=16\)

\(\Leftrightarrow4x=36\)

\(\Leftrightarrow x=9\)

vậy ...

2 tháng 8 2018

1)

\(A=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}\right)^2-2^2}\\ A=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)

\(B=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{x^2-2x\sqrt{2}+\left(\sqrt{2}\right)^2}{x^2-\sqrt{2}}\\ B=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{\left(x-\sqrt{2}\right)}{\left(x+\sqrt{2}\right)}\)

\(C=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+\left(\sqrt{5}\right)^2}\\ C=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)

\(D=\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}=\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)}{2\sqrt{a}-1}=\sqrt{a}\)

\(E=\dfrac{x^2-2}{x-\sqrt{2}}=\dfrac{x^2-\left(\sqrt{2}\right)^2}{x-\sqrt{2}}\\ E=\dfrac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=x+\sqrt{2}\)

\(F=\dfrac{\sqrt{x}-3}{x-9}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}\right)^2-3^2}\\ F=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ F=\dfrac{1}{\sqrt{x}+3}\)