K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

ta có x2+5x+4

=x2+x+4x+4

=(x2+x)+(4x+4)

=x(x+1)+4(x+1)

=(x+1)(x+4)

tương tự ta đc

x2+11x+28=(x+4)(x+7)

x2+17x+70=(x+7)(x+10)

x2+23x+130=(x+10)(x+13)

=>\(\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}=\dfrac{4}{13}\)\(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+11\right)}=\dfrac{4}{13}\)=>\(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}+....+\dfrac{1}{x+13}=\dfrac{4}{13}\)

=>\(\dfrac{1}{x+1}-\dfrac{1}{x+13}=\dfrac{4}{13}\)

=>\(\dfrac{13\left(x+13\right)}{13\left(x+1\right)\left(x+13\right)}-\dfrac{13\left(x+1\right)}{13\left(x+1\right)\left(x+13\right)}=\dfrac{4\left(x+1\right)\left(x+13\right)}{13\left(x+1\right)\left(x+13\right)}\)

=> 13(x+13)-13(x+1)=4(x+1)(x+13)

=> 13[(x+13)-(x+1)]=(4x+4)(x+13)

=>13(x+13-x-1)=4x2+52x+4x+52

=13.12=4x2+56x+52

=>4x2+56x+52=156

=>4x2+56x-104=0

19 tháng 2 2019

a)

\(\dfrac{1}{x+1}+\dfrac{2}{x^3-x^2-x+1}+\dfrac{3}{x^2-1}=0\) (\(x\ne\pm1\))

\(\Rightarrow\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}+\dfrac{2}{\left(x+1\right)\left(x-1\right)^2}+\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=0\)

\(\Rightarrow\dfrac{x^2-2x+1+2+3x-3}{\left(x+1\right)\left(x-1\right)^2}=0\)

\(\Rightarrow\dfrac{x^2+x-2}{\left(x+1\right)\left(x-1\right)^2}=0\)

\(\Rightarrow x^2-x+2=0\)

\(\Rightarrow\left(x-1\right)\left(x+2\right)=0\)

=> Th1 :

x- 1 =0

=> x = 1 ( hư cấu vì không thỏa mãn ĐK )

Th2 :

x+2 = 0

=> x = -2 ( hợp lí )

Vậy nghiệm của phương trình là x = -2

26 tháng 12 2017

a.

\(\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-11x+28}+\dfrac{1}{x^2-19x+84}=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-7\right)}+\dfrac{1}{\left(x-7\right)\left(x-12\right)}=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{x-3}-\dfrac{1}{x-12}=\dfrac{1}{4}\\ \Rightarrow\dfrac{-9}{\left(x-3\right)\left(x-12\right)}=\dfrac{1}{4}\\ \Rightarrow x^2-15x+36=-36\\ \)

Tự giải tiếp

a:=>3x=15

=>x=5

b: =>8-11x<52

=>-11x<44

=>x>-4

c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)

\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)

1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)

\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(3x+9+4x-12=3x-7\)

\(\Leftrightarrow4x=-7+12-9=-4\)

hay \(x=-1\left(nhận\right)\)

2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)

Suy ra: \(3x+12-4x+16=3x-4\)

\(\Leftrightarrow28-4x=-4\)

\(\Leftrightarrow4x=32\)

hay \(x=8\left(tm\right)\)

3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

Suy ra: \(5x^2-12+3x+3=5x^2-5x\)

\(\Leftrightarrow3x-9+5x=0\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(nhận\right)\)

1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)

Suy ra: \(5x^2+3x-9=5x^2-5x\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(tm\right)\)

2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)

\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(6x=3x-15\)

\(\Leftrightarrow3x=-15\)

hay \(x=-5\left(loại\right)\)

 

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)

Vậy pt vô nghiệm.

 

a: =>\(\dfrac{5x-15+4x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{1}{x}\)

=>\(\dfrac{9x-23}{\left(x-2\right)\left(x-3\right)}=\dfrac{1}{x}\)

=>9x^2-23x=x^2-5x+6

=>8x^2-18x-6=0

=>\(x=\dfrac{9\pm\sqrt{129}}{8}\)

b: =>\(\dfrac{12x+1}{11x-4}=\dfrac{20x+17-20x+8}{18}=\dfrac{25}{18}\)

=>216x+18=275x-100

=>-59x=-118

=>x=2

a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)

\(\Leftrightarrow49-21x+60x+24=84x+1092\)

\(\Leftrightarrow39x-84x=1092-73\)

=>-45x=1019

hay x=-1019/45

b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)

=>21x+63-14=20x+36-49x+63

=>21x+49=-29x+99

=>50x=50

hay x=1

c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)

=>14x+7-15x-6-21x-63=0

=>-22x-64=0

hay x=-32/11

d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)

=>70x-105-30x-45=84x+63-1785

=>40x-150-84x+1722=0

=>-44x+1572=0

hay x=393/11

19 tháng 2 2022

a, msc 12.7=84 

Chuyển vế về =0 rồi làm

b,msc 28

c,làm tương tự

1: Ta có: \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)

Suy ra: \(-3\left(x+4\right)-3+5x=x-4\)

\(\Leftrightarrow-3x-12-3+5x-x+4=0\)

\(\Leftrightarrow x=11\left(nhận\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

2. ĐKXĐ: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{3(x-2)}{(2+x)(x-2)}-\frac{x-1}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)

\(\Leftrightarrow \frac{3(x-2)-(x-1)}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)

\(\Rightarrow 3(x-2)-(x-1)=2(x+2)\)

\(\Leftrightarrow 2x-5=2x+4\Leftrightarrow 9=0\) (vô lý)

Vậy pt vô nghiệm

 

25 tháng 2 2022

ĐKXĐ: ` x ne 1 ; x ne 4`

`(2x+1)/(x^2-5x+4) + 5/(x-1) = 2/(x-4)`

`<=> (2x+1)/[(x-1)(x-4)] + [5(x-4)]/[(x-1)(x-4)] = [2(x-1)]/[(x-1)(x-4)]`

`=> 2x+1 + 5x -20 = 2x-2`

`<=> 5x = 17`

`<=> x= 17/5`(thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là `S={ 17/5}`

25 tháng 2 2022

undefined