Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3.\)
Ta có:
\(x^2-9x-6\sqrt{x}+34=0\)
\(\Leftrightarrow\) \(x^2-2.5.x+25+x-2.3.\sqrt{x}+9=0\)
\(\Leftrightarrow\) \(\left(x-5\right)^2+\left(\sqrt{x}-3\right)^2=0\) \(\left(3\right)\)
Mà \(\left(x-5\right)^2\ge0;\) \(\left(\sqrt{x}-3\right)^2\ge0\) với \(x\in R\)
nên \(\left(3\right)\) \(\Leftrightarrow\) \(\left(x-5\right)^2=0;\) và \(\left(\sqrt{x}-3\right)^2=0\)
\(\Leftrightarrow\) \(x-5=0;\) và \(\sqrt{x}-3=0\)
\(\Leftrightarrow\) \(x=5;\) và \(x=9\)
Thay \(x=5\) vào vế trái của phương trình \(\left(3\right)\), ta được:
\(VT=\left(5-5\right)^2+\left(\sqrt{5}-3\right)^2\ne0=VP\) (vô lý!)
Tương tự với \(x=9\), ta cũng có điều vô lý như ở trên.
Vậy, phương trình vô nghiệm, tức tập nghiệm của phương trình \(S=\phi\)
\(1.\) Đặt biến phụ.
\(2.\) Biến đổi phương trình tương đương:
\(\left(2\right)\) \(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)=2.2016z-2016^2\)
\(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)-2.2016z+2016^2=0\)
\(\Leftrightarrow\) \(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+2yz+z^2\right)+\left(z^2-2.2016z+2016^2\right)=0\)
\(\Leftrightarrow\) \(\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y+z\right)^2+\left(z-2016\right)^2=0\)
\(\Leftrightarrow\) \(\left(x+y+1\right)^2+\left(y+z\right)^2+\left(z-2016\right)^2=0\)
Vì \(\left(x+y+1\right)^2\ge0;\) \(\left(y+z\right)^2\ge0;\) \(\left(z-2016\right)^2\ge0\) với mọi \(x,y,z\in R\)
Do đó, \(\left(x+y+1\right)^2=0;\) \(\left(y+z\right)^2=0;\) và \(\left(z-2016\right)^2=0\)
\(\Leftrightarrow\) \(x+y+1=0;\) \(y+z=0;\) và \(z-2016=0\)
\(\Leftrightarrow\) \(x=-y-1;\) \(y=-z;\) và \(z=2016\)
\(\Leftrightarrow\) \(x=2015;\) \(y=-2016;\) và \(z=2016\)
Bài 1:
x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)
=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)
=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)
Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5
=>xy(x-1)(x+1)(x2+1) chia hết cho 30
Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30
Nên x5y-xy5 chia hết cho 30
Bài 2:
x2+y2+z2=y(x+z)
<=>x2+y2+z2-yx-yz=0
<=>2x2+2y2+2z2-2yx-2yz=0
<=>(x – y)2 + (y – z)2 + x2 + z2 = 0
<=>x – y = y – z = x = z = 0
<=>x=y=z=0
<=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0
Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0
<=> x = 1/2y và 1/2y = 1 và z = 1.
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.
xy - x + 2(y - 1) = 2
x(y - 1) + 2(y - 1) = 2
(x + 2)(y - 1) = 2
TH1: x + 2 = 1 và y - 1 = 2 <=> x = -1 và y = 3
TH2: x + 2 = 2 và y - 1 = 1 <=> x = 0 và y = 2
TH3: x + 2 = -1 và y - 1 = -2 <=> x = -3 và y = -1
TH4: x + 2 = -2 và y - 1 = -1 <=> x = -4 và y = 0