K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

xy - x + 2(y - 1) = 2

x(y - 1) + 2(y - 1) = 2

(x + 2)(y - 1) = 2

TH1: x + 2 = 1 và y - 1 = 2 <=> x = -1 và y = 3

TH2: x + 2 = 2 và y - 1 = 1 <=> x = 0 và y = 2

TH3: x + 2 = -1 và y - 1 = -2 <=> x = -3 và y = -1

TH4: x + 2 = -2 và y - 1 = -1 <=> x = -4 và y = 0

26 tháng 4 2017

bài 125 sách NCPT toán 8 tập 1 nha bn

6 tháng 4 2016

\(3.\)  

Ta có:

\(x^2-9x-6\sqrt{x}+34=0\)

\(\Leftrightarrow\)  \(x^2-2.5.x+25+x-2.3.\sqrt{x}+9=0\)

\(\Leftrightarrow\)  \(\left(x-5\right)^2+\left(\sqrt{x}-3\right)^2=0\)  \(\left(3\right)\)

Mà  \(\left(x-5\right)^2\ge0;\)  \(\left(\sqrt{x}-3\right)^2\ge0\)  với  \(x\in R\)

nên  \(\left(3\right)\)  \(\Leftrightarrow\)  \(\left(x-5\right)^2=0;\)  và  \(\left(\sqrt{x}-3\right)^2=0\)

                \(\Leftrightarrow\)   \(x-5=0;\)  và  \(\sqrt{x}-3=0\)

                \(\Leftrightarrow\)   \(x=5;\)  và  \(x=9\)

Thay  \(x=5\)  vào vế trái của phương trình  \(\left(3\right)\), ta được:

\(VT=\left(5-5\right)^2+\left(\sqrt{5}-3\right)^2\ne0=VP\)  (vô lý!)

Tương tự với  \(x=9\), ta cũng có điều vô lý như ở trên.

Vậy, phương trình vô nghiệm, tức tập nghiệm của phương trình  \(S=\phi\)

6 tháng 4 2016

\(1.\)  Đặt biến phụ.

\(2.\)  Biến đổi phương trình tương đương:

\(\left(2\right)\)  \(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)=2.2016z-2016^2\)

         \(\Leftrightarrow\)  \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)-2.2016z+2016^2=0\)

         \(\Leftrightarrow\)  \(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+2yz+z^2\right)+\left(z^2-2.2016z+2016^2\right)=0\)

         \(\Leftrightarrow\)  \(\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y+z\right)^2+\left(z-2016\right)^2=0\)

         \(\Leftrightarrow\)  \(\left(x+y+1\right)^2+\left(y+z\right)^2+\left(z-2016\right)^2=0\)

Vì  \(\left(x+y+1\right)^2\ge0;\)  \(\left(y+z\right)^2\ge0;\)  \(\left(z-2016\right)^2\ge0\)  với mọi  \(x,y,z\in R\)

Do đó,   \(\left(x+y+1\right)^2=0;\)  \(\left(y+z\right)^2=0;\)  và  \(\left(z-2016\right)^2=0\)  

       \(\Leftrightarrow\)  \(x+y+1=0;\)  \(y+z=0;\)  và  \(z-2016=0\) 

       \(\Leftrightarrow\)  \(x=-y-1;\)  \(y=-z;\) và  \(z=2016\)

       \(\Leftrightarrow\)  \(x=2015;\)  \(y=-2016;\)  và  \(z=2016\)

21 tháng 1 2019

Bài 1:

x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)

=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)

=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)

Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5

=>xy(x-1)(x+1)(x2+1) chia hết cho 30

Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30

Nên x5y-xy5 chia hết cho 30

21 tháng 1 2019

Bài 2:

       x2+y2+z2=y(x+z)

<=>x2+y2+z2-yx-yz=0

<=>2x2+2y2+2z2-2yx-2yz=0

<=>(x – y)2 + (y – z)2 + x2 + z2 = 0

<=>x – y = y – z = x = z = 0

<=>x=y=z=0

5 tháng 4 2016

khó thế

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0