Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ne-1\)
\(x.\frac{3-x}{x+1}\left(x+\frac{3-x}{x+1}\right)=2\)
\(\Leftrightarrow\frac{x^2\left(3-x\right)}{x+1}+\frac{x\left(3-x\right)^2}{\left(x+1\right)^2}-2=0\)
\(\Leftrightarrow\frac{\left(3x^2-x^3\right)\left(x+1\right)+x\left(9-6x+x^2\right)-2\left(x^2+2x+1\right)}{\left(x+1\right)^2}=0\)
\(\Leftrightarrow\left(3x^2-x^3\right)\left(x+1\right)+x\left(9-6x+x^2\right)-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow-x^4+3x^3-5x^2+5x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(-x^3+2x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(-x^2+x-1\right)=0\)
Do \(-x^2+x-1\ne0\forall x\) nên \(x-1=0\Leftrightarrow x=1\)
b) Tương tự.
a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)
<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1
<=> x2+x+1 - 3x2 = 2x(x-1)
<=>x2+x+1 - 3x2 = 2x2-2x
<=>x2-3x-1=0( đoạn này làm nhanh nhé)
<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0
<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0
<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0
\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)
b) pt... đkxđ x khác 1;2;3
<=> 3(x-3) +2(x-2)=x-1
<=> 3x-9 +2x-4 = x-1
<=> 4x= 12
<=> x=3 ( ko thỏa đk)
vậy pt vô nghiệm
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(=>x^2+x+1-3x^2=2x\left(x-1\right)\)
\(=>-2x^2+x+1=2x^2-2x\)
\(=>-4x^2+3x+1=0\)
\(=>\left(x-1\right)\left(x+\frac{1}{4}\right)=0\)'
\(=>\orbr{\begin{cases}x-1=0\\x+\frac{1}{4}\end{cases}=>\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)
nhìn căng nhể :))
a) ( x - 1 )( x - 3 )( x + 5 )( x + 7 ) - 297 = 0
<=> [ ( x - 1 )( x + 5 ) ][ ( x - 3 )( x + 7 ) ] - 297 = 0
<=> ( x2 + 4x - 5 )( x2 + 4x - 21 ) - 297 = 0
Đặt t = x2 + 4x - 5
pt <=> t( t - 16 ) - 297 = 0
<=> t2 - 16t - 297 = 0
<=> t2 - 27t + 11t - 297 = 0
<=> t( t - 27 ) + 11( t - 27 ) = 0
<=> ( t - 27 )( t + 11 ) = 0
<=> ( x2 + 4x - 5 - 27 )( x2 + 4x - 5 + 11 ) = 0
<=> ( x2 + 4x - 32 )( x2 + 4x + 6 ) = 0
<=> ( x2 - 4x + 8x - 32 )( x2 + 4x + 6 ) = 0
<=> [ x( x - 4 ) + 8( x - 4 ) ]( x2 + 4x + 6 ) = 0
<=> ( x - 4 )( x + 8 )( x2 + 4x + 6 ) = 0
Đến đây dễ rồi :)
\(\frac{x\left(3-x\right)}{x+1}\left(x+\frac{3-x}{x+1}\right)=2\)
\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(\frac{x^2+x+3-x}{x+1}\right)=2\)
\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{x^2+3}{x+1}=2\)
\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{3x+3+x^2-3x}{x+1}=2\)
\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(1+\frac{x^2-3x}{x+1}\right)=2\)
Đặt \(a=\frac{x\left(3-x\right)}{x+1}\)
\(\Leftrightarrow a\left(1+a=2\right)\)
\frac{x\left(3-x\right)}{x+1}\left(x+\frac{3-x}{x+1}\right)=2x+1x(3−x)(x+x+13−x)=2
\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(\frac{x^2+x+3-x}{x+1}\right)=2⇔x+1x(3−x)(x+1x2+x+3−x)=2
\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{x^2+3}{x+1}=2⇔x+1x(3−x).x+1x2+3=2
\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{3x+3+x^2-3x}{x+1}=2⇔x+1x(3−x).x+13x+3+x2−3x=2
\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(1+\frac{x^2-3x}{x+1}\right)=2⇔x+1x(3−x)(1+x+1x2−3x)=2
Đặt a=\frac{x\left(3-x\right)}{x+1}a=x+1x(3−x)
\Leftrightarrow a\left(1+a=2\right)⇔a(1+a=2)