K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=\dfrac{-7}{x+2}\)

\(\Leftrightarrow3-\left(x+2\right)=-7\left(x-1\right)\)

\(\Leftrightarrow3-x-2+7x-7=0\)

\(\Leftrightarrow6x-6=0\)

hay x=1(loại

b: Ta có: \(\dfrac{2}{-x^2+6x-8}-\dfrac{x-1}{x-2}=\dfrac{x+3}{x-4}\)

\(\Leftrightarrow\dfrac{-2}{\left(x-2\right)\left(x-4\right)}-\dfrac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}\)

Suy ra: \(-2-x^2+5x-4=x^2+x-6\)

\(\Leftrightarrow-x^2+5x-6-x^2-x+6=0\)

\(\Leftrightarrow-2x^2+4x=0\)

\(\Leftrightarrow-2x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)

12 tháng 8 2021

\(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{\left(x^2-x\right)+\left(2x-2\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{x\left(x-1\right)+2\left(x-1\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{1}{x-1}+\dfrac{7}{x+2}=0\)

\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{x+2}{\left(x+2\right)\left(x-1\right)}+\dfrac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{3-\left(x+2\right)+7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Rightarrow3-x-2+7x-7=0\)

\(\Rightarrow6x-6=0\)

\(\Rightarrow x=1\)

3 tháng 7 2017

a ; \(3x-7\sqrt{x}+4=0 \) 
\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

từ đó suy ra x

5 tháng 7 2017

Bạn giải cụ thể từng câu cho mk nhé!!! :))))

10 tháng 8 2016

Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)

Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)

\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)

  • Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
  • Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1).  

Từ điều kiện : Với \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\)

 \(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>0\)

Do đó pt (1) vô nghiệm.

Vậy pt ban đầu vô nghiệm.

10 tháng 8 2016

Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)

Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)

\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)

  • Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
  • Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1).  So sánh từ điều kiện : Với mọi \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\)\(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>\)với mọi x

Do đó pt (1) vô nghiệm.

Vậy pt ban đầu vô nghiệm.

12 tháng 3 2019

\(x^2+\left(m-1\right)x+m-2=0\left(1\right)\)

a, Với m = -2

\(\left(1\right)\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)

b, \(\Delta=\left(m-1\right)^2-4\left(m-2\right)=m^2-2m+1-4m+8=m^2-6m+9=\left(m-3\right)^2\ge0\)

Vậy phương trình luôn có 2 nghiệm với mọi m.

c, Theo vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=1-m\\x_1.x_2=m-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=1-x_1-x_2\\m=x_1x_2+2\end{cases}}\)

\(\Leftrightarrow1-x_1-x_2=x_1x_2+2\Leftrightarrow x_1+x_2+x_1x_2=-1\)

Đây là hệ thức cần tìm.

6 tháng 7 2017

a ĐK \(x\ge0\)

\(3x-7\sqrt{x}+4=0\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=\frac{4}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}\left(tm\right)}}\)

b. ĐK \(x\ge2\)

\(\Leftrightarrow\sqrt{x+1}.\sqrt{x-1}=\sqrt{x+3}.\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{x^2-1}=\sqrt{x^2+x-6}\)

\(\Leftrightarrow x^2-1=x^2-x+6\Leftrightarrow x=5\left(tm\right)\)

Các câu còn lại tương tự

26 tháng 4 2018

\(a)\) Thay \(m=-1\) vào phương trình \(x^2+2\left(m-1\right)x+m^2=0\) ta được : 

\(x^2+2\left(-1-1\right)x+\left(-1\right)^2=0\)

\(\Leftrightarrow\)\(x^2+2x.\left(-2\right)+1=0\)

\(\Leftrightarrow\)\(x^2-4x+1=0\)

\(\Leftrightarrow\)\(x^2-4x=-1\)

\(\Leftrightarrow\)\(x\left(x-4\right)=-1\)

Ta có bảng : 

\(x\)\(1\)\(-1\)
\(x-4\)\(-1\)\(1\)
\(x\)\(1\) ( loại ) \(-1\) ( loại ) 
\(x\)\(3\) ( loại ) \(5\) ( loại ) 

Vậy khi \(m=-1\) thì không có giá trị của x thoã mãn phương trình 

Chúc bạn học tốt ~ 

27 tháng 8 2018

a) Thay m =\(-1\)vào PT ta có:

\(x^2-2\left(-1-1\right)x+\left(-1\right)^2=0\)

\(\Leftrightarrow x^2-4x+1=0\)

\(\Delta^,=2^2-1=3\)

Vậy PT có 2 nghiệm \(2+\sqrt{3},2-\sqrt{3}\)

b) PT có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta^,=\left(m-1\right)^2-m^2=-2m+1>0\Leftrightarrow m>\frac{1}{2}\)

Vậy khi m >\(\frac{1}{2}\),PT có 2 nghiệm phân biệt.

1 tháng 2 2020

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow2x+1=2x^3+x^2+2x+1\)\(\Leftrightarrow2x^3+x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)

2 tháng 2 2020

\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\left(1\right)\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0!2x+1!=2x+1\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)

\(\hept{\begin{cases}2x+1=0\\-x^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}}\)

Chúc bạn học tốt !!!