Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-2.3.x+9\right)+\left(y^2+2.5.y+25\right)=58\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)
vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left(y+5\right)^2\ge0\end{cases}\text{và là hai số chính phương}}\)
mà 58 chẵn => \(\hept{\begin{cases}\left(x-3\right)^2\\\left(y+5\right)^2\end{cases}\text{cùng tính chẵn lẻ}}\)
tự c/m nha, bn xét SCP chẵn, lẻ là đc(ko c/m đc ib)
\(\text{mà chỉ có 49, 9 t/m điều kiện }\Rightarrow...\)
\(x^2-6x+y^2+10y=24\)
\(\Leftrightarrow x^2-6x+9+y^2+10x+25=58\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)
\(\Leftrightarrow\left(x-3\right)^2\le58\Leftrightarrow\left(x-3\right)^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
Dễ nhận thấy chỉ có tổng của 49 và: 9; 9 và 49 thỏa mãn (vì các số trên là số chính phương
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}\left(x-3\right)^2=49\Leftrightarrow x-3=7\Leftrightarrow x=10\\\left(y+5\right)^2=9\Leftrightarrow y+5=3\Leftrightarrow y=-2\end{cases}}\\\end{cases}}\)<=> (x-3)^2+(y+5)^2=49+9=9+49
+) (x-3)^2+(y+5)^2=49+9
=> x-3=7=>x=10 và: y+5=3=>y=-2
+) (x-3)^2+(y+5)^2=9+49
=> (x-3)=3=>x=6 và y+5=7=>y=2
Vậy có 2 cặp (x,y)={(6;2);(10;-2)}
thỏa mãn điều kiện
\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)
- Với \(x=2\Rightarrow y=5\)
- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\)
Đặt \(y-5=n\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)
\(\Rightarrow x^2+8=n^2\)
\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)
\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\)
=>10y=18-8x
=>y=(9-4x)/5