K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

Đề bài yêu cầu gì?

11 tháng 1 2019

\(\left(x^2-2.3.x+9\right)+\left(y^2+2.5.y+25\right)=58\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)

vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left(y+5\right)^2\ge0\end{cases}\text{và là hai số chính phương}}\)

mà 58 chẵn => \(\hept{\begin{cases}\left(x-3\right)^2\\\left(y+5\right)^2\end{cases}\text{cùng tính chẵn lẻ}}\)

tự c/m nha, bn xét SCP chẵn, lẻ là đc(ko c/m đc ib)

\(\text{mà chỉ có 49, 9 t/m điều kiện }\Rightarrow...\)

11 tháng 1 2019

\(x^2-6x+y^2+10y=24\)

\(\Leftrightarrow x^2-6x+9+y^2+10x+25=58\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)

\(\Leftrightarrow\left(x-3\right)^2\le58\Leftrightarrow\left(x-3\right)^2\in\left\{0;1;4;9;16;25;36;49\right\}\)

Dễ nhận thấy chỉ có tổng của 49 và: 9; 9 và 49 thỏa mãn (vì các số trên là số chính phương

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}\left(x-3\right)^2=49\Leftrightarrow x-3=7\Leftrightarrow x=10\\\left(y+5\right)^2=9\Leftrightarrow y+5=3\Leftrightarrow y=-2\end{cases}}\\\end{cases}}\)<=> (x-3)^2+(y+5)^2=49+9=9+49

+) (x-3)^2+(y+5)^2=49+9

=> x-3=7=>x=10 và: y+5=3=>y=-2

+) (x-3)^2+(y+5)^2=9+49

=> (x-3)=3=>x=6 và y+5=7=>y=2

Vậy có 2 cặp (x,y)={(6;2);(10;-2)}

thỏa mãn điều kiện

NV
8 tháng 1

\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)

- Với \(x=2\Rightarrow y=5\)

- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\) 

Đặt \(y-5=n\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)

\(\Rightarrow x^2+8=n^2\)

\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)

\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\) 

28 tháng 12 2019