Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)+\left(2x+1\right)\left(1-5x\right)=-33\)
\(pt\Leftrightarrow3x\left(8x-3\right)+2\left(8x-3\right)-\left(x\left(4x+7\right)+4\left(4x+7\right)\right)+\left(2x+1\right)-5x\left(2x+1\right)+33=0\)
\(\Leftrightarrow24x^2-9x+16x-6-\left(4x^2+7x+16x+28\right)+2x+1-10x^2-5x+33=0\)
\(\Leftrightarrow24x^2-9x+16x-6-4x^2-7x-16x-28+2x+1-10x^2-5x+33=0\)
\(\Leftrightarrow10x^2-19x=0\Leftrightarrow x\left(10x-19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
2. \(\left(8x-3\right).\left(3x+2\right)-\left(4x+7\right).\left(x+4\right)=\left(2x+1\right).\left(5x-1\right)\)
\(\Leftrightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Leftrightarrow\left(x-3\right).\left(x+\frac{11}{10}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)
( Đúng thì ) hihi
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+7x-6-\left(4x^2+23x+28\right)=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Leftrightarrow10x^2-30x+11x-33=0\)
\(\Leftrightarrow10x\left(x-3\right)+11\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(10x+11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\10x+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)
Vậy \(x\in\left\{3;-\frac{11}{10}\right\}.\)
Bài làm :
Ta có :
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+7x-6-\left(4x^2+23x+28\right)=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Leftrightarrow10x^2-30x+11x-33=0\)
\(\Leftrightarrow10x\left(x-3\right)+11\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(10x+11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\10x+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)
Vậy x=3 hoặc x=-11/10
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
=>\(24x^2+16x-9x-6-\left(4x^2+16x+7x+28\right)=10x^2-2x+5x-1\)
=>\(24x^2+7x-6-4x^2-23x-28-10x^2-3x+1=0\)
=>\(10x^2-19x-33=0\)
=>\(10x^2-30x+11x-33=0\)
=>10x(x-3)+11(x-3)=0
=>(x-3)(10x+11)=0
=>\(\left[{}\begin{matrix}x-3=0\\10x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{10}\end{matrix}\right.\)