K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

Bakura hài lon thật sự :)) copy không thấy nhục à

4x2 + 4x + y2 - 6y = 24

<=> ( 4x2 + 4x + 1 ) + ( y2 - 6y + 9 ) = 34

<=> ( 2x + 1 )2 + ( y - 3 )2 = 34

Vì VT là tổng hai bình phương nên VP cũng phải là tổng hai bình phương

=> ( 2x + 1 )2 + ( y - 3 )2 = 52 + 32 = (-5)2 + (-3)2

Xét các trường hợp :

1. \(\hept{\begin{cases}2x+1=5\\y-3=3\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

2. \(\hept{\begin{cases}2x+1=3\\y-3=5\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=8\end{cases}}\)

3. \(\hept{\begin{cases}2x+1=-5\\y-3=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}\)

4. \(\hept{\begin{cases}2x+1=-3\\y-3=-5\end{cases}}\Rightarrow x=y=-2\)

Vậy ...

15 tháng 3 2021

Giải phương trình nghiệm nguyên : 4x2 + 4x + y2 - 6y = 24

Được cập nhật 13 tháng 3 2018 lúc 23:03

Nguyễn Anh Quân

13 tháng 3 2018 lúc 21:41

Ak mk bị nhầm tí sorry nha giải tiếp đoạn đó nha

(2x+1)^2+(y-3)^2 = 34 = 5^2 + 9^2

<=> (2x+1)^2 = 5^2 ; (y-3)^2 = 9^2 hoặc (2x+1)^2 = 9^2 ; (y-3)^2 = 5^2

<=> x=2 hoặc x=-3 ; y=12 hoặc y=-6 

   hoặc :

      x=4 ; x=-5 hoặc y=8 ; y=-2

pt

<=> (4x^2+4x+1)+(y^2-6y+9) = 14

<=>(2x+1)^2 + (y-3)^2 = 14

<=> (2x+1)^2 = 14 - (y-3)^2  < = 14

Mà 2x+1 lẻ nên (2x+1)^2 thuộc {1;9}

+, Với (2x+1)^2 = 1 => (y-3)^2 = 13 => ko tồn tại y thuộc Z

+, Với (2x+1)^2 = 9 => (y-3)^2 = 5 => ko tồn tại y thuộc Z

Vậy ko tồn tại cặp số x,y thuộc Z t/m pt 

13 tháng 3 2018

Ak mk bị nhầm tí sorry nha giải tiếp đoạn đó nha

(2x+1)^2+(y-3)^2 = 34 = 5^2 + 9^2

<=> (2x+1)^2 = 5^2 ; (y-3)^2 = 9^2 hoặc (2x+1)^2 = 9^2 ; (y-3)^2 = 5^2

<=> x=2 hoặc x=-3 ; y=12 hoặc y=-6 

   hoặc :

      x=4 ; x=-5 hoặc y=8 ; y=-2

Vậy ............

Tk mk nha

13 tháng 3 2018

pt <=> (4x^2+4x+1)+(y^2-6y+9) = 14

<=>(2x+1)^2 + (y-3)^2 = 14

<=> (2x+1)^2 = 14 - (y-3)^2  < = 14

Mà 2x+1 lẻ nên (2x+1)^2 thuộc {1;9}

+, Với (2x+1)^2 = 1 => (y-3)^2 = 13 => ko tồn tại y thuộc Z

+, Với (2x+1)^2 = 9 => (y-3)^2 = 5 => ko tồn tại y thuộc Z

Vậy ko tồn tại cặp số x,y thuộc Z t/m pt 

Tk mk nha

6 tháng 7 2021

e chưa đến tầm đó

12 tháng 10 2017

a) x2+y2-2x-6y+10=0 <=>(x2-2x+1)+(y2-6y+9)=0

(x-1)2+(y-3)2=0 mà (x-1)2 và (y-3)2 luôn lớn hơn hoặc bằng 0

=>(x-1)2=0=>x-1=0=>x=1

=>(y-3)2=0=>y-3=0=>y=3

14 tháng 9 2018

có điều kiện cho x,y không?

14 tháng 9 2018

x;y thuộc Z

18 tháng 7 2018

b)   \(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

c)  \(4x^2-12x-y^2+2y+8\)

\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

\(=\left(2x-3\right)^2-\left(y-1\right)^2\)

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk

11 tháng 3 2020

Thay x =-2 vào phương trình :

\(4.\left(-2\right)^2-25+k^2+4k.\left(-2\right)=0\)

\(\Leftrightarrow16-25+k^2-8k=0\)

\(\Leftrightarrow k^2-8k-9=0\)

\(\Leftrightarrow\left(k-9\right)\left(k+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}k-9=0\\k+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}k=9\\k=-1\end{cases}}\)

Vậy để phương trình nhận x =-2 làm nghiệm \(\Leftrightarrow k\in\left\{9;-1\right\}\)

\(\)

13 tháng 3 2018

a) \(\Leftrightarrow x^4-4x-1=0\)

\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)

\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)

\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)

Tự giải pt bậc 2 nhak :))))

18 tháng 7 2018

a) (x+y+4)(x+y-4) = (x+y)2 - 42

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk tốt