K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

Đặt \(t=2^x\left(t>0\right)\) thì phương trình trở thành 

\(4t^2-2t.4-\left(t^4+2t^3\right)=0\)

Bây giờ coi 4=u là một ẩn của phương trình, còn t là số đã biết. Phương trình trở thành phương trình bậc 2 đối với ẩn u. Tính \(\Delta'\)

ta có :

\(\Delta'=\left(-t\right)^2+\left(t^4+2t^3\right)=\left(t^2+t\right)^2\)

Do đó :

\(\begin{cases}u=t-t\left(t+1\right)\\u=t+t\left(t+1\right)\end{cases}\) \(\Leftrightarrow\begin{cases}4=-t^2\\4=t^2+2t\end{cases}\) \(\Leftrightarrow t^2+2t-4=0\)

                             \(\Leftrightarrow\begin{cases}t=-1-\sqrt{5}\\t=-1+\sqrt{5}\end{cases}\)

Suy ra \(2^x=\sqrt{5}-1\Leftrightarrow x=\log_2\left(\sqrt{5}+1\right)\)

GV
26 tháng 4 2017

a) Điều kiện: \(\left\{{}\begin{matrix}4x+2>0\\x-1>0\\x>0\end{matrix}\right.\)

Hay là: \(x>1\)

Khi đó biến đổi pương trình như sau:

\(\ln\dfrac{4x+2}{x-1}=\ln x\)

\(\Leftrightarrow\dfrac{4x+2}{x-1}=x\)

\(\Leftrightarrow4x+2=x\left(x-1\right)\)

\(\Leftrightarrow x^2-5x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{33}}{2}\\x_2=\dfrac{5-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

Vậy nghiệm của phương trình là: \(x=\dfrac{5+\sqrt{33}}{2}\)

GV
26 tháng 4 2017

b) Điều kiện: \(\left\{{}\begin{matrix}3x+1>0\\x>0\end{matrix}\right.\)

Hay là: \(x>0\)

Biến đổi phương trình như sau:

\(\log_2\left(3x+1\right)\log_3x-2\log_2\left(3x+1\right)=0\)

\(\Leftrightarrow\log_2\left(3x+1\right)\left(\log_3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\log_2\left(3x+1\right)=0\\\log_3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=2^0\\x=3^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=9\end{matrix}\right.\)

Vậy nghiệm là x = 9.

31 tháng 3 2017

Số nghiệm của các phương trình đã cho chính là số giao điểm của đồ thị hàm số y = f(x) ở vế trái của phương trình cới trục hoành ở câu a), b) và với đường thẳng y = -1 ở câu c).

a) Xét hàm số y = x3 – 3x2 + 5 . Tập xác định : R.

y' = 3x2 - 6x = 3x(x - 2); y' = 0 ⇔ x = 0,x = 2.

Bảng biến thiên:

Đồ thị như hình bên.

Từ đồ thị ta thấy phương trình đã cho có nghiệm duy nhất .

b) Xét hàm số y = -2x3 + 3x2 - 2 . Tập xác định : R.

y' = -6x2 + 6x = -6x(x - 1); y' = 0 ⇔ x = 0,x = 1.

Đồ thị như hình bên. Từ đồ thị ta thấy phương trình đã cho có nghiệm duy nhất .

c) Xét hàm số y = f(x) = 2x2 - 2x4. Tập xác định : R.

y' = 4x - 4x3 = 4x(1 - x2); y' = 0 ⇔ x = 0,x = ±1.

Bảng biến thiên:

Đồ thị hàm số f(x) và đường thẳng y = -1 như hình bên.

Từ đồ thị ta thấy phương trình đã cho có hai nghiệm phân biệt.

8 tháng 4 2016

Điều kiện x>0.

Phương trình đã cho tương đương :

\(\log_3\left(x^2+2x\right)-\log_3\left(3x+2\right)=0\)

\(\Leftrightarrow\log_3\left(x^2+2x\right)=\log_3\left(3x+2\right)\)

\(\Leftrightarrow x^2+2x=3x+2\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\begin{cases}x=-1\\x=2\end{cases}\)

Đối chiếu điều kiện ta có phương trình đã cho có nghiệm là \(x=2\)

28 tháng 3 2016

d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1

Phương trình đã cho tương đương với :

\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)

\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)

Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :

\(t^2-4t-5=0\) hay t=-1 V t=5

Do \(t\ge0\) nên t=5

\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn

Vậy \(x=\pm2^{50}\) là nghiệm của phương trình

28 tháng 3 2016

c) Điều kiện x>0. Phương trình đã cho tương đương với :

\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)

\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)

\(\Leftrightarrow8lg^2x-6lgx-5=0\)

Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành

\(8t^2-6t-5=0\)  hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)

Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)

Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)

Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)

 
23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

29 tháng 3 2016

Nếu $x+2>2x+1$ thì $2^{x+2}>2^{2x+1},3^{x+2}>3^{2x+1}$ nên VT>VP.

Nếu $x+2<2x+1$ thì $2^{x+2}<2^{2x+1},3^{x+2}<3^{2x+1}$ nên VT<VP.

Vậy x+2=2x+1 hay x=1

29 tháng 3 2016

Phương trình đã cho tương đương với phương trình 

\(3^{x+2}-3^{x+2}=3^{2x+1}-2^{2x+1}\)

Dễ thấy \(x=1\) là nghiệm của phương trình

Nếu \(x>1\) thì \(x+2<2x+1\)

Do đó

\(3^{x+2}<3^{2x+1};3^{2x+1}>2^{x+2}\)

Hay vế trái <0< Vế phải, phương trình vô nghiệm

Tương tự, nếu x<1 thì phương trình cũng vô nghiệm

Vạy x=1 là nghiệm duy nhất của phương trình

8\(^x\)\(=\)9\(^x\)

\(\Leftrightarrow\)(\(\frac{8}{9}\))\(^x\)\(=\) 1

\(\Leftrightarrow\) x \(=0\)

29 tháng 3 2016

Lấy Logarit cơ số 2 hai vế ta được phương trình tương đương

\(\log_22^{3^x}=\log_23^{2^x}\)

\(\Leftrightarrow3^x=2^x.\log_23^{ }\)

\(\Leftrightarrow\left(\frac{3}{2}\right)^x=\log_23\)

Do đó \(x=\log_{\frac{3}{2}}\log_23\) là nghiệm của phương trình

NV
9 tháng 6 2019

a/ ĐKXĐ: \(x>\frac{1}{2}\)

\(\Leftrightarrow\frac{3x^2-1}{\sqrt{2x-1}}-\sqrt{2x-1}=mx\)

\(\Leftrightarrow\frac{3x^2-2x}{\sqrt{2x-1}}=mx\Leftrightarrow\frac{3x-2}{\sqrt{2x-1}}=m\)

Đặt \(\sqrt{2x-1}=a>0\Rightarrow x=\frac{a^2+1}{2}\Rightarrow\frac{3a^2-1}{2a}=m\)

Xét hàm \(f\left(a\right)=\frac{3a^2-1}{2a}\) với \(a>0\)

\(f'\left(a\right)=\frac{12a^2-2\left(3a^2-1\right)}{4a^2}=\frac{6a^2+2}{4a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến

Mặt khác \(\lim\limits_{a\rightarrow0^+}\frac{3a^2-1}{2a}=-\infty\); \(\lim\limits_{a\rightarrow+\infty}\frac{3a^2-1}{2a}=+\infty\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

NV
9 tháng 6 2019

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt[4]{\left(x-1\right)^2}+4m\sqrt[4]{\left(x-1\right)\left(x-2\right)}+\left(m+3\right)\sqrt[4]{\left(x-2\right)^2}=0\)

Nhận thấy \(x=2\) không phải là nghiệm, chia 2 vế cho \(\sqrt[4]{\left(x-2\right)^2}\) ta được:

\(\sqrt[4]{\left(\frac{x-1}{x-2}\right)^2}+4m\sqrt[4]{\frac{x-1}{x-2}}+m+3=0\)

Đặt \(\sqrt[4]{\frac{x-1}{x-2}}=a\) pt trở thành: \(a^2+4m.a+m+3=0\) (1)

Xét \(f\left(x\right)=\frac{x-1}{x-2}\) khi \(x>0\)

\(f'\left(x\right)=\frac{-1}{\left(x-2\right)^2}< 0\Rightarrow f\left(x\right)\) nghịch biến

\(\lim\limits_{x\rightarrow2^+}\frac{x-1}{x-2}=+\infty\) ; \(\lim\limits_{x\rightarrow+\infty}\frac{x-1}{x-2}=1\) \(\Rightarrow f\left(x\right)>1\Rightarrow a>1\)

\(\left(1\right)\Leftrightarrow m\left(4a+1\right)=-a^2-3\Leftrightarrow m=\frac{-a^2-3}{4a+1}\)

Xét \(f\left(a\right)=\frac{-a^2-3}{4a+1}\) với \(a>1\)

\(f'\left(a\right)=\frac{-2a\left(4a+1\right)-4\left(-a^2-3\right)}{\left(4a+1\right)^2}=\frac{-4a^2-2a+12}{\left(4a+1\right)^2}=0\Rightarrow a=\frac{3}{2}\)

\(f\left(1\right)=-\frac{4}{5};f\left(\frac{3}{2}\right)=-\frac{3}{4};\) \(\lim\limits_{a\rightarrow+\infty}\frac{-a^2-3}{4a+1}=-\infty\)

\(\Rightarrow f\left(a\right)\le-\frac{3}{4}\Rightarrow m\le-\frac{3}{4}\)