![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x>\dfrac{1}{5}\)
\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)
\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)
\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)
\(\Leftrightarrow\sqrt{5x-1}>1-3x\)
TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)
TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)
Kết luận: \(x>\dfrac{2}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ:
\(\left(2x+2-2\sqrt{5x-1}\right)+\left(\sqrt{5x^2+x+3}-\left(2x+1\right)\right)+x^2-3x+2=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{x+1+\sqrt{5x-1}}+\dfrac{x^2-3x+2}{\sqrt{5x^2+x+3}+2x+1}+x^2-3x+2=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\dfrac{2}{x+1+\sqrt{5x-1}}+\dfrac{1}{\sqrt{5x^2+x+3}+2x+1}+1\right)=0\)
\(\Leftrightarrow x^2-3x+2=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)
\(\Rightarrow\left(2+\sqrt{3}\right)^{3x+1}=\left(2+\sqrt{3}\right)^{-5x-8}\)
\(\Leftrightarrow3x+1=-5x-8\)
\(\Leftrightarrow x=-\frac{9}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
=>x>=-1 và 3x^2+5x-13=x^2+2x+1
=>x>=-1 và 2x^2+3x-14=0
=>x>=-1 và 2x^2+7x-4x-14=0
=>x>=-1 và (2x+7)(x-2)=0
=>x=2
\(\sqrt{3x^2+5x-13}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3x^2+5x-13=\left(x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\3x^2+5x-13=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2+3x-14=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=2\left(\text{nhận}\right)\\x=-\dfrac{7}{2}\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy: \(S=\left\{2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(5x^2+8x+25=4x^2+x^2+8x+16+9=4x^2+\left(x+4\right)^2+9>0;\forall x\)
Nên phương trình tương đương:
\(5x^2+8x+25=3x^2-9x-5\)
\(\Leftrightarrow2x^2+17x+30=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{5}{2}\end{matrix}\right.\)