Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(-\dfrac{1}{4}\le x\le3\)
\(pt\Leftrightarrow4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
ĐK:x\(\ge\dfrac{1}{3}\)
\(x^2-x+1=2\sqrt{3x-1}\Leftrightarrow x^2+2x+1=3x-1+2\sqrt{3x-1}+1\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{3x-1}-1\right)^2\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=\sqrt{3x-1}-1\\x-1=1-\sqrt{3x-1}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\sqrt{3x-1}\\\sqrt{3x-1}=2-x\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x^2=3x-1\\3x-1=4-4x+x^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x^2-3x+1=0\\x^2-7x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{3+\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{3-\sqrt{5}}{2}\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{7+\sqrt{29}}{2}\left(ktm\right)\\x=\dfrac{7-\sqrt{29}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy S={\(\dfrac{3\pm\sqrt{5}}{2}\)}
ĐKXĐ: ...
\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)
Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)
\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)
Pt trở thành:
\(3t=t^2-10\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)
Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
dk \(\hept{\begin{cases}x\left(3x+1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{3}\end{cases}}}\)
vì x khác 0 nên chia cả 2 vế cho \(\sqrt{x}\)ta được \(\sqrt{3x+1}-\sqrt{x-1}=2\sqrt{x}< =>\)\(\sqrt{x-1}+2\sqrt{x}-\sqrt{3x+1}=0< =>\)\(\sqrt{x-1}+\frac{4x-\left(3x+1\right)}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(\sqrt{x-1}+\frac{x-1}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(< =>\sqrt{x-1}\left(1+\frac{\sqrt{x-1}}{2\sqrt{x}+\sqrt{3x+1}}\right)=0< =>\sqrt{x-1}=0\) (vì biểu thức trong ngoặc luôn \(\ge1\)) <=> x-1= 0 <=> x=1 (thỏa mãn điều kiện)
xét x=0 thấy không là nghiệm
xét x khác 0; đặt x=a; \(\frac{x}{x-1}=b;=>\frac{1}{a}+\frac{1}{b}=1< =>a+b=ab.\)
a3+b3+3ab-2=0<=> (a+ b)[(a+b)2- 3ab] + 3ab - 2=0 <=> ab(a2b2- 3ab)+ 3ab- 2=0
<=> (ab)3- 3(ab)2 + 3ab - 2=0 <=> (ab- 1)3 -1 =0 <=> ab- 1 = 1 <=> ab= 2 <=> \(x.\frac{x}{x-1}=2< =>x^2=2x-2< =>x^2-2x+2=0\)(vô nghiệm)
vậy pt vô nghiệm
ĐK: \(x^2-1\ge0\)
pt <=> \(\left(x^2+2x+1\right)-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)-4x^2+4x-1=0\)
<=> \(\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)\right]-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}-2x+1\right)\left(x+1-\sqrt{x^2-1}+2x-1\right)=0\)
Phương trình tích. Dễ rồi đúng ko? Tự làm tiếp nhé!
(x+1)(x+2)(x+4)(x+8)=28x2
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+9x+8\right)=28x^2\)(1)
Thấy x=0 không là nghiệm của (1). CHia 2 vế (1) cho x2 ta đc:
\(\left(1\right)\Leftrightarrow\left(x+\frac{8}{x}+6\right)\left(x+\frac{8}{9}+9\right)=28\)
Đặt \(t=x+\frac{8}{x}\)ta có:
\(\left(1\right)\Rightarrow\left(t+6\right)\left(t+9\right)=28\)
\(\Leftrightarrow t^2+15t+26=0\Leftrightarrow\orbr{\begin{cases}t=-2\\t=-13\end{cases}}\)
- Với \(t=-2\Rightarrow x+\frac{8}{x}=-2\Leftrightarrow x^2+2x+8=0\Leftrightarrow\left(x+1\right)^2+7>0\)(vô nghiệm)
- Với \(t=-13\Rightarrow x+\frac{8}{x}=-13\Rightarrow x^2+13x+8=0\)
\(\Delta=13^2-4\left(1.8\right)=137\)\(\Rightarrow x_{1,2}=\frac{-13\pm\sqrt{137}}{2}\)(thỏa mãn)
Vậy...