\(2x^3-\sqrt{108x+45}=x\sqrt{48x+20}-3x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2019

ĐKXĐ: \(x\ge-\frac{5}{12}\)

\(2x^3-3\sqrt{12x+5}-2x\sqrt{12x+5}+3x^2=0\)

\(\Leftrightarrow x^2\left(2x+3\right)-\left(2x+3\right)\sqrt{12x+5}=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x^2-\sqrt{12x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\Rightarrow x=\frac{-3}{2}\left(l\right)\\x^2=\sqrt{12x+5}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^4-12x+5=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+2x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\left(l\right)\end{matrix}\right.\)

30 tháng 3 2019

\(\left(2x+3\right)\left(x^2-\sqrt{12x+5}\right)=0\)

10 tháng 5 2020

Câu hỏi của Lâm Anh Trần - Toán lớp 9 | Học trực tuyến

12 tháng 11 2016

a/ Điều kiện b tự làm nhé

Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x+1}=a\left(a\ge0\right)\\2\sqrt{x^2-x+1}=b\left(b\ge0\right)\end{cases}}\)

Ta có: \(a^2-b^2=9x-3\)từ đó pt ban đầu thành

\(a-b=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(1-a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\1=a+b\end{cases}}\)

Tới đây thì đơn giản rồi b làm tiếp nhé

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

27 tháng 7 2019

a,

\(2\sqrt{3x}-\sqrt{48x}+\sqrt{108x}+\sqrt{3x}\\ =3\sqrt{3x}-\sqrt{4^2\cdot3x}+\sqrt{6^2\cdot3x}\\ =3\sqrt{3x}-4\sqrt{3x}+6\sqrt{3x}=5\sqrt{3x}\)

b,

\(2\sqrt{25xy}+\sqrt{5}\cdot\sqrt{45x^3y^3}-3y\sqrt{16x^3y}\\ =2\sqrt{5^2xy}+\sqrt{5\cdot45}\cdot\sqrt{\left(xy\right)^2\cdot xy}-3y\sqrt{\left(4x\right)^2\cdot xy}\\ =2\cdot5\sqrt{xy}+\sqrt{225}\cdot xy\sqrt{xy}-3y\cdot4x\sqrt{xy}\\ =10\sqrt{xy}+15xy\sqrt{xy}-12xy\sqrt{xy}=\sqrt{xy}\left(3xy+10\right)\)

c,

\(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{12}{3-\sqrt{13}}\\ =\frac{2\left(\sqrt{3}+1\right)}{3-1}+\frac{3\left(\sqrt{3}+2\right)}{3-4}+\frac{12\left(3+\sqrt{13}\right)}{9-13}\\ =\frac{2\left(\sqrt{3}+1\right)}{2}+\frac{3\left(\sqrt{3}+2\right)}{-1}+\frac{12\left(3+\sqrt{13}\right)}{-4}\\ =\sqrt{3}+1-3\sqrt{3}-6-9-3\sqrt{13}\\ =-14-2\sqrt{3}-3\sqrt{13}\)

d,

\(\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{7}+\sqrt{3}}\\ =\frac{\sqrt{3}+\sqrt{2}}{3-2}-\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{5-3}-\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{7-3}\\ =\sqrt{3}+\sqrt{2}-\sqrt{5}+\sqrt{3}+\sqrt{5}+\sqrt{2}+\sqrt{7}-\sqrt{3}=\sqrt{7}+\sqrt{3}\)

Chúc bạn học tốt nhaok.